

Abstract—Smart system applications (SSA)—a heterogeneous
landscape of applications of Internet of Things, Cyber-Physical
Systems, and Smart Sensing Systems—are composed of
autonomous yet inherently cooperating components. An
important problem in this area is how to hoist the cooperation of
software components forming dynamic groups —ensembles—at
the architectural level of an SSA. This is hard since ensembles can
overlap, be nested, and dynamically formed and dismantled based
on several criteria. A related problem is how to combine
component and ensemble specification with a well-established
language supported on multiple platforms. To target these
problems, we propose a specification and implementation
language TCOEL (Trait-based Component Ensemble Language)
based on Scala internal DSL, to describe both the architecture and
formation of dynamic ensembles of components and their
functional internals. To raise the level of expressivity, we introduce
the concept of domain-specific extensions (traits) to the TCOEL
core to reflect different paradigms’ concerns—such as movement
in a 2D map, state-space modeling of physical processes, and
statistical reasoning about uncertainty. This allows for configuring
TCOEL for the needs of a specific SSA use case, and, at the same
time, facilitates reuse. To evaluate TCOEL, we show how it can be
beneficially used in addressing the coordination of agents in a
RoboCup Rescue Simulation application.

Index Terms—architecture description language, autonomic
components, component ensembles, smart cyber-physical systems

I. INTRODUCTION
mart systems manifest as heterogeneous, interconnected
landscape of various applications of Internet of Things

(IoT), Cyber-Physical Systems (CPS), and/or Smart Sensing
Systems. A smart system application (SSA) is typically
composed of hardware units running upon specific network(s)
and of associated software components, achieving smartness by
sensing and operation, both autonomous and collaborative.
Responding to the dynamic nature of the environment in which
the smart systems exist, such collaboration typically needs to be
dynamically established to address situations localized both
temporarily and spatially. From the software design and
development perspective, such cooperation needs to take place
at the syntactic level (e.g., API matching, language

1 Tomas Bures, Petr Hnetynka, Frantisek Plasil, Filip Krijt, Jiri Vinarek, and

Jan Kofron are with the Faculty of Mathematics and Physics, Charles
University in Prague, Ke Karlovu 2027/3, 12000 Prague, Czech Republic (e-
mail: {name.surname}@d3s.mff.cuni.cz).

interoperability), at the semantic level (e.g., common
vocabulary, contracts for assume-guarantee reasoning), and at
the strategic level (such as sharing of goals performed by high-
level tasks). In this work, we focus on cooperation of software
components at the strategic level in the first place—assuming
that they form dynamic groups, also known as component
ensembles [1], [2]. Specifically, we presume that:

• There are strategic-level tasks to be performed and
joint goals to be achieved in the given SSA.

• The SSA has strategic-level tasks that can be
performed only by component ensembles.

• In the SSA, component ensembles are formed and
dismantled dynamically, based upon the actual state of
the SSA and its environment.

• Components are partially autonomous entities that can
participate in ensembles (become their members).

• Components proactively sense the SSA’s environment
and provide their knowledge to other components to
allow them to take smart and well-founded decisions.

For example, consider a smart emergency coordination
system where fire fighters and medical first responders carry
mobile hand-held devices running software components
supporting the bearers’ individual missions. Obviously,
different ensembles can be formed of these components in order
to let their bearers act autonomously and still cooperate in the
complex, multi-stakeholder tasks of rescue operations (e.g.
moving as a group towards a fire scene and/or approaching
those needing emergency medical care).

There are many other smart systems where ensembles are
inherently involved; for instance, it would be natural to apply
them in the examples provided in [3], [4], such as on-street
parking meters, employing swarms of sensors in a vehicle, and
a number of applications in the area of road-side computing and
intelligent transportation. Thus, specifying and implementing
software component ensembles in an intuitive, reusable and
semantically rich way is an important challenge in the area of
smart systems.

Moreover, ensembles have been suggested to hoist the
component cooperation and knowledge distribution concerns in
a dynamically changing CPS at the level of software

2 Ilias Gerostathopoulos is with the Department of Computer Science,
Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081
HV Amsterdam, Netherlands (e-mail: i.g.gerostathopoulos@vu.nl).

A Language and Framework for Dynamic
Component Ensembles in Smart Systems

Tomas Bures1, Ilias Gerostathopoulos2, Petr Hnetynka1, Frantisek Plasil1, Filip Krijt1, Jiri Vinarek1,
and Jan Kofron1

S

architecture3 [1]. This has been done in the context of
specialized component models and languages such as SCEL
[6], DEECo [1], and Helena [7]. By a logical condition upon the
ensemble and component actual states, an ensemble’s
description determines its member components and which
particular roles in the ensemble they play. Further, it embodies
the cooperation among the member components towards some
strategic-level task(s). Ensembles should be formed according
to a method that takes as input the overall goals of the system
and decomposes them For details, including a method of
ensemble design, we refer the reader to our work [8].

Problem statement. Despite the work done so far in
ensemble-based systems (including our own work on DEECo),
it is still hard to put these ideas into action in development of
complex real-life systems where ensembles may overlap, be
nested, dynamically formed and dismantled in a distributed
environment built upon multiple network platforms. Obviously,
in such settings, building the necessary programming
abstractions and machinery for ensemble specification and
formation from scratch is practically infeasible. What is missing
in particular, is an easy, flexible, and elegant way of supporting
the component and ensemble concepts in a well-established,
“ubiquitous” programming language available at multiple
platforms.

Main idea of contribution. We aim at addressing the
problem mentioned above by proposing programming
abstractions for ensemble and component specification. In
particular, we strive to address and balance the specification
simplicity and expressivity of the strategic-level tasks fulfilled
by either an ensemble or by a single component. Taking a
pragmatic approach, we propose a specification and rich
architecture description language on top of Scala [9]. This
potent multiple-purpose language, running on JVM, has been
designed as extensible (scalable in Scala terms). Thanks to this
property, it is possible not only use Scala as an implementation
language but also as a specification, domain specific language
by enhancing Scala’s core features by domain specific
constructs [10]. Moreover, owing to the use of JVM, Scala
programs seamlessly interoperate with Java and other JVM-
based languages; specifically, this allows an easy combination
of specification of ensembles with existing libraries and SSA
applications in Java.

Along these lines, we take advantage of the observation that
there are a number of recurring concepts in articulating
membership conditions of ensembles. For instance, some
ensembles are formed based on number and type of members
(e.g. “group together components representing 3 rescuers”),
some on spatial constraints (e.g. “group together components
representing firefighters that are physically close”), some on
predictions of certain values/outcomes (e.g. “group together
components based on the estimated number of components
necessary to complete task A in time”). We have further
observed that some of these concepts are independent of the
particular SSA domain (e.g. number of members), whereas

3 Architecture hoisting is the ownership and management of a property by

the architecture [5].

others depend on it (e.g. predictive functions, map-based
routing functions). The latter concepts we propose to capture in
reusable language extensions—traits, used as building blocks
of specification languages in allied domains.

Goals. In summary, the main goal of the paper is to propose
and implement a specification language for SSA termed Trait-
based COmponent Ensemble Language (TCOEL), using the
technique of Scala internal DSL [10]. TCOEL (1) supports
partial autonomicity of components, (2) allows both nested
ensembles (hierarchies) and overlapping ensembles, and (3)
makes ensemble formation a part of component activities.
Further, to increase the expressivity and reuse of ensemble
descriptions, we introduce the concept of reusable traits
embodying particular domain-dependent concepts and further
device a way of mixing the traits with the core (domain-
independent) features of TCOEL. This enables to tune up
TCOEL for a specific application case.

An additional goal is to shortly report on Trait-based
COmponent Ensemble Framework (TCOEF)—the runtime
framework implementing TCOEL and providing some domain-
dependent traits.

Structure of the text. Section II gives an overview of the
main ideas in the design of TCOEL and describes the core
concepts of the language. Section III presents the use case
motivating our work on ensemble formation in SSA. In Section
IV, the language TCOEL and framework TCOEF are described
in more detail together with the TCOEL extension by domain-
dependent traits. An evaluation on the application development
effort when using TCOEL is provided in Section V, together
with a discussion of limitations of the TCOEF framework.
Finally, Section VI compares our approach to related work on
component ensemble formation, and Section VII concludes
with an overview of the contributions.

II. CORE CONCEPTS AND THEIR SEMANTICS

A. Core concepts
In our approach, a component is an autonomic (potentially

mobile) entity, such as an agent mentioned later in Section III.
It entails (i) a data structure (knowledge) reflecting its state and
awareness of other components’ partial state (in terms of belief
[11]), last readings of its sensors and actuators, and (ii) periodic
activity. Within this activity, the component operates upon its
knowledge and interacts with other components and its
environment by sensing and actuating. Thus, component’s
knowledge conceptually comprises local knowledge, which
reflects the state of the component itself, and a snapshot of the
partial knowledge of other components and environment
(mirror knowledge).

An ensemble groups a number of member components to
support their cooperation. It dynamically changes as the
members’ knowledge and thus the ability to be a member is
modified. This change is determined by satisfaction of
membership condition indicated in the ensemble’s

specification, which is a predicate defined over the
components’ knowledge and current ensemble status. For
instance, a membership condition reads: “Not more than three
components that are spatially close to a point of interest”. The
ensemble actively drives cooperation of components by (i)
accepting one or more roles they offer within the ensemble
(e.g., which component extinguishes the fire and which one
protects the nearby buildings by cooling them down with water)
and (ii) performing its strategic-level task(s) related
computation (task computation for short). Technically, an
ensemble has its initiator—a component that instantiates it,
triggers its task computation, and performs communication
with other member components to (1) collect required
knowledge for the ensemble and to (2) distribute computational
results of it back to its members so that they can update their
knowledge, both local and mirror.

Ensemble type serves as a pattern for multiple ensemble
instances. Each of the instances has its specific initiator (also
referred to as “coordinator” in other works [12], [13]. For
example, a specification of FireBrigade ensemble type serves as a
pattern to creating FireBrigade ensemble instances, each
responding one of the multiple fire incidents taking place at the
same time. For the sake of brevity, by “ensemble” we mean
“ensemble instance” if “type” is not explicitly mentioned.

To reflect the nature of processes and responsibilities of the
real-world stakeholders in an SSA, hierarchical decomposition
of ensembles takes place. The rule of thumb is that members of
a child ensemble must be members of its parent ensemble too.
As such, the highest-level ensemble – root (typically a singleton
instance) – corresponds to an overall joint goal and serves to
divide strategic-level tasks among its children. Nevertheless,
multiple root ensembles may coexist in a single SSA – this is,
in particular, beneficial in distributed settings. In a similar vein,
ensembles can overlap in terms of sharing their members. This
naturally reflects the fact that a component may have multiple
roles by which can contribute to different strategic-level tasks
(e.g. refilling water and observing surroundings for potential
fire). In other words, a component can be a member of several
ensembles at the same time.

B. Semantics
The semantics of ensembles and their instantiation can be

seen as two separate problems; (a) how to determine and gather
the state of components in a distributed system to correctly
decide how to instantiate ensembles, and (b) how to instantiate
ensembles provided that the state of components is known.

The gathering of knowledge needed to establish ensembles
in distributed settings has been extensively tackled in our
previous publications. As such, we do not focus on this in this
paper and rather refer the reader to [1], [14], [15]. Likewise, we
do not focus on the semantics of nondeterminism in component
knowledge updates caused by their internal activities upon the
local and mirror knowledge. Here we refer the reader to our
work [16]–[18].

In the rest of this paper, we focus on how to specify and
instantiate ensembles. Compared to the previous works on
ensembles, we feature much richer semantics that covers

hierarchical ensembles and also the ability to specify different
variants of how to instantiate ensembles and decide the best.

Formally, we see the instantiation of ensembles as a
constraint optimization problem. For the sake of dealing with
this problem, we define components and ensembles as follows.

Component types and component instances

We distinguish component types and component instances.
Each component instance 𝑐 is instantiated from a particular
component type 𝐶. A component type 𝐶 is associated with a set
of attributes 𝐾 that form the knowledge (i.e. the state) of 𝑐. Each
𝑐 is associated with a valuation of its knowledge – i.e. a function
𝑉% that assigns each attribute 𝑘 ∈ 𝐾 a particular value.

Definition 1 (Ensemble type):
An ensemble type 𝐸 is a tuple (𝑃, 𝑅, 𝐺,𝑀, 𝑈, 𝑇), where:
• 𝑃 is a set of ensemble parameters;
• 𝑅 is a set of component roles in E;
• 𝐺 is a set of sub-ensemble groups in E;
• 𝑀 is a membership condition;
• 𝑈 is a utility function;
• 𝑇 is a task function.

Each component role 𝑟 ∈ 𝑅 is associated with a function
𝑟345(𝑉6) that for a given valuation of ensemble parameters 𝑉6
determines the component instances that may be selected for
the role (i.e. the powerset 289:;(<=) is the domain for the role
𝑟). Each sub-ensemble group 𝑔 ∈ 𝐺 is associated with function
𝑔𝑠345(𝑉6) that for a given valuation of ensemble parameters
𝑉6 yields a set of tuples @𝐸A, 𝑉6AB. Each (𝐸A, 𝑉6A) – ensemble
instance template – prescribes the ensemble type and
parameters for instantiation of a potential sub-ensemble in the
sub-ensemble group 𝑔. The membership condition (predicate)
𝑀 determines the condition under which an ensemble instance
based on E is valid. The predicate 𝑀 is parameterized by 𝑉6 , the
selection of component instances determined by 𝑟345(𝑉6) for
each role 𝑟 ∈ 𝑅, and the set of sub-ensemble instances
determined by 𝑔𝑠345(𝑉6) for each sub-ensemble group 𝑔 ∈ 𝐺.
Utility function U yields values upon which a total order ≤ is
defined. Similarly to 𝑀, it is parameterized by 𝑉6 , selection of
component instances to each role 𝑟 ∈ 𝑅, and set of sub-
ensemble instances for each sub-ensemble group 𝑔 ∈ 𝐺. Task
function T generates a set of tasks to be executed by instances
of E (for given 𝑉6) for 𝑉6 , selection of component instances to
each role 𝑟 ∈ 𝑅, and a set of sub-ensemble instances for each
sub-ensemble group. Note that we intentionally do not provide
a formal model for the tasks here because the nature of a task is
not relevant for how ensembles are instantiated. The tasks are
elaborated in Section IV in relation to the materialization of the
semantics in the Scala language.

Definition 2 (Ensemble instance):
An ensemble instance 𝑒 of ensemble type 𝐸 =
(𝑃, 𝑅, 𝐺,𝑀,𝑈, 𝑇) is a tuple	(𝑉6G, 𝑉HG, 𝑉IG), where:
• 𝑉6G is a function that assigns a value (of the appropriate type)

to each parameter 𝑝 ∈ 𝑃;

• 𝑉HG	 is a function that assigns a subset of component instances
selected as the possible members of e of 𝑟345(𝑉6G) to each
component role 𝑟 ∈ 𝑅;

• 𝑉IG is a function that assigns a set of ensemble instances 𝐼L to
each sub-ensemble group 𝑔 ∈ 𝐺.

Each ensemble instance 𝑒M ∈ 𝐼L must comply (see below)

with some (𝐸A, 𝑉6A) from the 𝑔𝑠345(𝑉6G) associated with 𝑔. The
projection from 𝐼L to 𝑔𝑠345(𝑉6G) does not have to be surjective
(i.e. not all ensemble instance templates in 𝑔𝑠345(𝑉6G) have to
be actually instantiated).

Formally, for every 𝑒M = (𝑉6
M, 𝑉H

M, 𝑉I
M) 	∈ 𝐼L there exists an

ensemble instance template @𝐸A, 𝑉6AB ∈ 𝑔𝑠345(𝑉6G) such that	𝑒M
complies with the type (i.e. 𝐸A is ensemble type of 𝑒M and 𝑉6

M =
𝑉6A).

An ensemble instance e is valid only if the following
conditions are true:
• The membership condition is satisfied – i.e. 𝑀(𝑉6G, 𝑉HG, 𝑉IG)	

is true;
• All sub-ensemble instances are valid – i.e. ∀𝑔 ∈ 𝐺, ∀𝑒O ∈
𝑉IG(𝑔): (𝑒O	is	valid);

• An ensemble instance is not transitively its own child
ensemble instance (i.e. there is no cycle in the ensemble
instance hierarchy (tree));

• Any component instance that is a member of a child
ensemble instance is also member of its parent ensemble
instances higher in the ensemble hierarchy.

The utility of the ensemble instance e is 𝑈G = 𝑈(𝑉6G, 𝑉HG, 𝑉IG).

Note that by being parameterized by 𝑉IG , the utility function 𝑈
can aggregate the utilities of sub-ensemble instances.

Definition 3 (Root ensemble instance):
An ensemble instance is called root ensemble instance if it is
not a sub-ensemble of another ensemble instance. We denote 𝐴
the set of all root ensemble instances.

Let 𝐴𝑇345 be the set of root ensemble instance templates
(𝐸A, 𝑉6A). Each such template determines how to potentially
instantiate exactly one root ensemble instance – i.e. for each
root ensemble instance 𝑒M = @𝑉6

M, 𝑉H
M, 𝑉I

MB ∈ 𝐴 there is exactly
one ensemble instance template @𝐸A, 𝑉6AB ∈ 𝐴𝑇345 such that 𝑒M
complies with this ensemble instance template.

For the sake of instantiation of ensembles, we also associate
each tuple @𝐸A, 𝑉6AB ∈ 𝐴𝑇345 with a component instance 𝑐 ∈ 𝐶
responsible for instantiating the corresponding ensemble
instance 𝑒M. We call the component 𝑐 the initiator of the
ensemble instance 𝑒M.

Definition 4 (Optimal instantiation of ensembles):
A valid ensemble instance 𝑒 = (𝑉6, 𝑉H, 𝑉I) of type 𝐸 is optimal
with respect to ensemble instance template (𝐸, 𝑉6) (that

4 http://roborescue.sourceforge.net/

specifies how to instantiate the ensemble instance) if there is no
other valid ensemble instance 𝑒X = (𝑉6X , 𝑉HX , 𝑉IX) that complies
with the ensemble instance template (𝐸, 𝑉6) and 𝑈G < 𝑈GX.

Ensembles in a system are optimally instantiated (with
respect to 𝐴𝑇345) if for each ensemble instance template
@𝐸A, 𝑉6AB ∈ 𝐴𝑇345)	, one of the following conditions hold:
• There exists a corresponding 𝑒M = @𝑉6

M, 𝑉H
M, 𝑉I

MB ∈ 𝐴 that
complies with @𝐸A, 𝑉6AB and is optimal;

• There exists no valid 𝑒M = @𝑉6
M, 𝑉H

M, 𝑉I
MB that would comply

with @𝐸A, 𝑉6AB.

As mentioned above, we will use the terms “component” and

“ensemble” to refer to a component instance and ensemble
instance, respectively, and explicitly refer to their respective
types only when needed.

C. Instantiation of ensembles
The SSA establishes ensembles to always achieve optimal

instantiation of ensembles (as per Definition 4). The
instantiation is partitioned per root ensemble instances. Since
these are mutually independent, the instantiation can be seen as
a set of (isolated) constrain optimization problems (COPs). For
each root e the goal of the associated COP is identifying those
component instances that should be the ensemble members
throughout the ensemble hierarchy with e as the root.
Technically, the COP is solved by the initiator component
instance associated with e. In essence, the initiator gathers the
knowledge needed to solve the COP, solves it and runs all the
task defined by T functions of the ensemble types the ensemble
instances comply with (bottom up throughout the ensemble
hierarchy). Finally, the results of the tasks are propagated back
to the member component instances of these ensembles. Since
all the root ensemble instances are independent, all this happens
in parallel across all initiators in the SSA.

III. USE CASE—ROBOCUP RESCUE SIMULATION
In this Section, we describe the use case serving to exemplify

TCOEL constructs and semantics and motivate our decisions in
its design.

RoboCup Rescue Simulation4 (RCRS) is a research and
educational project targeted on evaluation of multi-agent
solutions in disaster response scenarios. The research on the
project is stimulated by the annual RoboCup rescue league, one
of the most important competitions in robotics. RCRS provides
a simulation platform that imitates a city after an earthquake.
The simulation consists of a city map which includes streets,
intersections, and buildings, and of stationary and platoon
agents. Buildings may collapse due to an earthquake; they may
also be on fire. Street fragments may be blocked by debris.
Stationary agents include Fire Stations, Police Offices and
Ambulance Centers. Platoon agents include Fire Brigades,
Police Forces, and Ambulance Teams. Each type of the platoon
agents has specific strategic tasks to achieve and different
capabilities. Fire Brigades are responsible for extinguishing

fires, Police Forces for removing blocking debris from the
streets, and Ambulance Teams for rescuing humans by
unburying them and carrying them to Refuges (special type of
buildings). Importantly, platoon agents have a limited view of
the world—based on their line of sight—and can communicate
with each other and with the stationary agents either face-to-
face (when being close-by) or by transmitting messages via
unreliable radio channels.

In this setting, one of the challenges RCRS raises is how to
form and dismantle teams at runtime of platoon agents in order
to efficiently coordinate search and rescue operations. A team
is formed as (potentially heterogeneous) group of agents, with
each agent featuring a particular team-specific role in
contributing to the strategic task(s) of the team. Agents are
selected for a particular role based on several criteria (which
can be also combined), in particular:
• Based on agent type. A team of Fire Brigades and

Police Forces can enable the former to get information
on a route to the fire that is cleared of blocking debris.
This is reflected in the set of component roles of the
ensemble definition (Section II.B).

• Based on number of agents. A team may require a
certain number of Fire Brigades to cooperatively work
on extinguishing the fire in a building. This is reflected
in the membership condition of the ensemble definition
(Section II.B).

• Based on a soft optimization rule. Among the Fire
Brigades eligible for participating in a team, prefer those
that are closer to the fire. This is reflected in the utility
function of the ensemble definition (Section II.B).

• Based on spatial proximity. Platoon agents that are
close-by can form a team in order to rendezvous and
share updates regarding street blockages (by debris) via
face-to-face communication. In TCOEL, this criterion is
reflected in the map trait (Section IV.B).

• Based on temporal proximity. Only those buildings on
fire are extinguished that can be reached before they are
burnt out (the RCRS simulator assumes burnt out
buildings need not be responded by Fire Brigades). In
TCOEL, this criterion is reflected in the map trait
(Section IV.B).

• Based on estimated cooperation effort. Upon detecting
a fire, Fire Brigades can form a team composed of the
(estimated) minimum number of Fire Brigades
necessary to prevent the fire from spreading to nearby
buildings. In TCOEL, this criterion is reflected in the
data prediction trait (Section IV.B).

• Based on the probability of effective cooperation.
Cooperation is decided based on the probability of
successful communication via unreliable wireless
channels. For example, if communication reliability
falls below a certain level, a team which relies on regular
rendezvous of agents to exchange data over close-range
(i.e. face-to-face) communication is chosen over a team
where all agents communicate via long-range radio. In
TCOEL, this criterion is reflected in the statistics trait

(Section IV.B).

IV. TCOEL AND TCOEF
In this Section, we articulate the criteria for ensemble

formation employed for the use case in Section III via the
TCOEL concepts. We also briefly describe a prototype
implementation of TCOEL containing the engine forming the
ensembles at runtime and trait library—TCOEF framework
(middleware) available at http://github.com/d3scomp/tcoef.

We split the criteria for ensembles’ formation (used in
specification of ensemble types, see definitions in Section II.B)
in two categories: (i) Based on the core concepts that are
independent of a particular SSA domain, (ii) based on the
concepts that depend on particular SSA domains; we group the
latter into reusable traits. By trait, we denote a set of concepts
that extend the core of TCOEL and can be used optionally; this
is similar to object-oriented languages where a trait (sometimes
called mixin), is typically a set of orthogonal methods that can
be attached to a class to extend its behavior.

The concepts featured by a trait are specific to a particular
SSA domain (e.g. connected mobility, emergency coordination,
home automation, robotic swarm) or to a particular aspect of
the domain (e.g. navigation in 2D space). This makes the traits
reusable across multiple use cases. For example, the “map” trait
reflects the concept of spatial proximity and can be reused in
applications that belong either to the connected mobility
domain or to the domain of emergency coordination in a city.
In contrast, criteria that do not depend on a particular SSA
domain are universal in ensemble type specification, i.e. they
typically make sense in any application domain. For example,
the “type” of an agent is a possible criterion for ensemble
formation in any application (irrespective of its domain).

Thus, an ensemble type in an SSA can be specified by using
the domain-independent concepts and augmenting them with
selected traits.

A. TCOEL, an example
In TCOEL we represent (specify) both component and

ensemble types as Scala classes that extend the abstract classes
Component and Ensemble respectively. Furthermore, we use the
power of Scala to define new control structures (constructs for
short) to express the operation steps of components and to
declare membership condition and task computation of an
ensemble. Technically, these constructs are realized as Scala
functions with a “by-name” parameter [9].

We exemplify our approach on a part of the RCRS use case
(Section III) illustrated in Fig. 1. Here the abstract classes
Component and Ensemble are inherited by application-specific
classes—lines 4, 41, 66, 81, 113. In particular, a FireStation
component is expected to form an ensemble with FireBrigade
components in order to extinguish the fire of a building and
protect the surrounding ones. Similarly, there are components
representing other RCRS agents (AmbulanceTeam, etc.). Due to
space limits, Fig. 1 does not show how components are actually
instantiated; for simplicity let us assume there exists a singleton
of FireStation and n instances of FireBrigade. To achieve the
required ensembles, the ensemble FireCoordination (line 66),

initiated by FireStation, introduces two sets of child
ensembles—extinguishTeams and protectionTeams (lines 68-
73). FireCoordination is a root ensemble (Section II.B). The
members of these child ensembles cover disjoint locations on
the city map. Members of an ensemble ProtectionTeam are
selected from brigades (line 81, instances of FireBrigade) and
are associated with a particular fireLocation; the selection is
determined by the membership construct (lines 86-99) specifying
that only the instances of FireBrigade which are either idle or
already at the scene given by fireLocation are considered.
Additionally, they have to be at a distance from which they can
reach the fireLocation before the building there burns down
(otherwise, there is no reason to go there). Plus, their number
has to be 2 or 3. In the taskComputation construct (lines 106-110)
the selected brigades are assigned to specific fire locations. The
ensemble type ExtinguishTeam is specified similarly.

Below we elaborate more on the TCOEL component and
ensemble semantics.

Components. In support of self-adaptation, a component
operates on a periodic basis by performing the classical MAPE-
K loop [19]. This is done in the following four steps activated
by TCOEF.

In Monitoring, the component senses data from its sensors
and typically receives messages from the other components that
are initiators of the ensembles it is a member of; as a follow-up
it accordingly updates its knowledge (e.g., line 5), both local
and mirror (the types of which are defined in Model). In TCOEL,
this step is specified by the sensing construct (lines 8-13,44-46).

In Analysis, the component first determines the potential
activities it can perform, given its state of knowledge. To
achieve its conceptual autonomy and play its role in the current
requirement of ensemble, the component’s activities are
controlled by its behavior states (BState, line 6). Each state
determines a particular component activity (e.g. going to refill
water, seeking refuge in case a firefighter is hurt). A component
can be in multiple behavior states at the same time, which
corresponds to the ability to simultaneously fulfil several roles.
The construct constraints (lines 15-19) serves to indicate (i)
dependency of a behavior state on a particular value in
component knowledge and (ii) conflicting states (e.g. moving
and observing environment). To break ties in situation where
different conflicting behavior states could be selected given the
current valuation of knowledge, the utility construct provides a
utility function, allotting weight to behavior states (lines 25-27).

In Planning initiation of ensembles takes place. This involves
solving the constraint optimization problem (Section II.C)
stemming from the ensemble type specification (membership
condition, utility function) and from the current knowledge and
utility value of the potential component members. This
initiation is captured by the ensembleResolution construct (lines
48-52) employed in the component that becomes the initiator of
the ensembles resulting from the resolution.

In Execution (the actuation construct—lines 20-23 and 54-63)
the component performs the actuation and typically sends
knowledge updates to the initiators of the ensembles it is a
member of. If the component is an initiator of an ensemble
(contains the construct ensembleResolution), then the final step

in actuation is a signal for dismantling “its” ensemble(s) – this is
completed once all their tasks are finished (specified in the
taskComputation constructs).

As an aside, the periodic operation of components is not
visible in Fig. 1, since component instances are activated by the
RCRS simulator in its simulation steps.

Ensembles. The specification of an ensemble type is
structured following the core concepts of ensemble formation
as discussed in Section II.A. The selection of components,
based on their type, is represented by the role construct (line 82).
It determines the potential components that can take
responsibility in the ensemble in the given role. The actual
selection of components is then based on the membership
condition (membership construct—lines 75-78 and 86-99) and
the utility function (soft optimization rule defined by the utility
construct—lines 101-104). For example, in the ProtectionTeam
ensemble type, membership mandates that utility is computed as
inversely proportional to the travel time needed for each
selected member brigade to get to fireLocation. Strategic-level task
computation takes the form of updating coordination-relevant
knowledge of the ensemble’s members (taskComputation
construct—lines 106-110). The membership condition includes
both the cardinality constraints on the number of components
(agents) and the domain-dependent constraints pertaining to
geographical proximity which exploit the concepts featured by
the inherited traits (Section IV.B).

As to writing membership conditions in nested ensembles,
there is a simple convention: Assuming the parent ensemble
type P defines its membership condition MP, and a direct child
ensemble type C defines its membership condition MC, then the
actual membership condition of C is MP & MC. This reflects
the rule that a member component of an instance of C has to be
also a member component of an instance of P.

1. class RescueScenario extends Model with RCRSConnectorTrait
2. with Map2DTrait [MapNodeStatus] with StateSpaceTrait {
3.
4. class FireBrigade(val entityID: EntityID) extends Component {
5. var assignedFireLocation: …, waterLevel: …, location: …
6. val Protecting, Refilling, Idle, Escaping = BState
7.
8. sensing {
9. sensed.messages.foreach {
10. case (InitiatorToFireBrigade(receiverId, ..., fireLoc), _)
11. // ...
12. }
13. }
14.
15. constraints {
16. (Escaping->(brigadeHealth<MINOR_INJURY_THRESHOLD)) &&
17. (Refilling->(refillingAtRefuge || tankEmpty)) &&
18. // ...
19. }
20. actuation {
21. performAction()
22. sendMessages()
23. }
24.
25. utility {
26. if (Protecting) 1 else 0
27. }
28.
29. private def performAction(): Unit = state match {
30. case Refilling if !refillingAtRefuge => moveTo(nearestRefuge)
31. case Escaping if !regeneratingAtRefuge =>
32. moveTo(nearestRefuge)

c
o
m
p
o
n
e
n
t

33. case Protecting =>
34. if (inExtinguishingDistanceFromFire) extinguish()
35. else moveTo(assignedBuildingOnFire)
36. case _ => rest()
37. }
38. // ...
39. }
40.
41. class FireStation(val entityID: EntityID) extends Component {
42. val fireCoordination = root(new FireCoordination(this))
43.
44. sensing {
45. processReceivedMessages()
46. }
47.
48. ensembleResolution {
49. fireCoordination.initiate()
50. //establishes a number of ProtectionTeam
51. //and of ExtinguishTeam instances
52. }
53.
54. actuation {
55. for (protectionTeam <-
56. fireCoordination.protectionTeams.selected)
57. for (brigade <- protectionTeam.brigades.selected) {
58. val message = InitiatorToFireBrigade(brigade.entityID,
59. brigade.brigadeState, brigade.assignedFireLocation)
60. agent.sendSpeak(time, Constants.TO_AGENTS,
61. Message.encode(message))
62. // ... likewise for ExtinguishTeam
63. }
64. }
65.
66. class FireCoordination(fireStation: FireStation) extends Ensemble {
67. // fireStation ∈ 𝑃 in Definition 1
68. val extinguishTeams = // 𝑔 ∈ 𝐺 in Definition 1
69. ensembles(buildingsOnFire.map(fireLocation => new
70. ExtinguishTeam(fireLocation)))
71. val protectionTeams = // 𝑔 ∈ 𝐺 in Definition 1
72. ensembles(buildingsOnFire.map(fireLocation => new
73. ProtectionTeam(fireLocation)))
74.
75. membership { // M in Definition 1
76. extinguishTeams.map(_.brigades)
77. ++ protectionTeams.map(_.brigades)).allDisjoint
78. }
79. }
80.
81. class ProtectionTeam(fireLocation: EntityID) extends Ensemble {
82. val brigades = role("brigades",components.select[FireBrigade])

 // 𝑟 ∈ 𝑅 in Definition 1
83. val routesToFireLocation = map.shortestPath.to(fireLocation)
84. val firePredictor = statespace(burnModel(fireLocation), time,
85. fireLocation.status.burnoutStage)
86. membership { // M in Definition 1
87. brigades.all(brigade =>
88. (brigade.state == Idle) ||
89. (brigade.state == Protecting) &&
90. sameLocations(brigade.assignedFireLocation)
91.) &&
92. brigades.all(brigade =>
93. routesToFireLocation.timeFrom(mapPosition(brigade)) match {
94. case None => false
95. case Some(travelTime) =>
96. firePredictor.valueAt(travelTime) < 0.9
97. }) &&
98. brigades.cardinality >= 2 && brigades.cardinality <= 3
99. }
100.
101. utility { // U in Definition 1
102. brigades.sum(brigade => travelTimeToUtility(
103. routesToFireLocation.timeFrom(mapPosition(brigade))))
104. }
105.
106. taskComputation { // T in Definition 1
107. for (brigade <- brigades.selectedMembers) {
108. brigade.assignedFireLocation = Some(fireLocation)
109. }
110. }
111. }

112.
113. class ExtinguishTeam(fireLocation:EntityID) extends Ensemble
114. { /* ... */ }
115. }

Fig. 1. Fragment of ROBOCUP Rescue scenario in TCOEL

B. Expressivity through domain-dependent traits
In a membership condition it is not easy to express real-world

constraints such as that one component is spatially close to
another one, or that a building does not burn down before a
firefighter unit reaches the building, etc. The articulation of
such conditions strongly depends on the particular SSA domain.
To build support for all the possible types of conditions to the
core of the specification language is not only impractical, since
the language would be quite complex and hard to learn, but even
impossible, as all the possible SSA domains cannot be foreseen.
Plus, a single application typically would not need all the
condition types. Indeed, all the examples in Section III specify
conditions over spatial distances and estimated travel times.
However, while the RCRS use case prescribes conditions over
estimates of fire spreading/burning speed, a connected mobility
system would, e.g., prescribe conditions over estimates of
traffic congestions and vehicle speeds, etc. Therefore, in our
approach, all these domain-dependent condition types are to be
designed as reusable traits to be picked up and used in
compliance with the needs of a specific application whenever
possible.

In the rest of the Section, we overview three traits that are
already available in TCOEF. As with the core concepts, we
illustrate two of them on the RCRS example in Fig. 1. On the
lines 1-2 there are the map trait (Map2DTrait) and data prediciton
trait (StateSpaceTrait); furthermore, there is also a specific
RCRSConnectorTrait connecting the language run-time (TCOEF)
with the Rescue simulator (it creates particular agents and
processes messages from/to the simulator—not explained
here). Technically, TCOEL traits are developed as Scala traits.

Map Trait. This trait serves to capture spatial-temporal
relations between the components to be included in an
ensemble. The typical use is, e.g., to select the entities that are
close to each other or close to a particular location in terms of
travel time. An example is on lines 83, 93, 102-103. Line 82
computes the shortest routes to fireLocation (via Dijkstra’s
algorithm). Lines 93 and 102-103 query the computed travelTime
needed for a FireBrigade to reach fireLocation.

Data prediction Trait. This trait serves to form ensembles
based on the prediction of a data value in SSA. Such predictions
can rely either on state-space models that characterize data
evolution based on physical processes [20] or on machine
learning models that capture patterns and trends in historical
data. Examples of application of this trait include (i) the team
of “agents within travel time less than the estimated time until
building B is burnt out” and (ii) the team of “agents within
travel time less than the estimated time-to-survive of victim V”.

In TCOEL, the former is captured by lines 84-85 and 96.
Lines 84-85 initialize a predictor of how quickly a particular
building (at fireLocation) burns out based on its burning model
represented as an ordinary differential equation (ODE); such a

c
o
m
p
o
n
e
n
t

c
o
m
p
o
n
e
n
t

e
n
s
e
m
b
l
e

e
n
s
e
m
b
l
e

e
n
s
e
m
b
l
e

model is assumed to be associated with each building. The
initial conditions for ODE are the current time and current
burnoutStage of the building.

The predictor uses a solver (i.e. a numerical integrator) to
solve ODE for a specified point of time (line 96). By combining
Map2DTrait and StateSpaceTrait, lines 93-96, it is ensured that “All
agents selected for the team have to be able to reach the building
(i.e. travelTime is not None) while the burnoutStage of the building
and the travelTime the agent needs to reach it has to be below 0.9
(the building is not burnt out yet)”.

Statistics Trait. This trait offers the possibility to construct
an ensemble based on statistical evidence about the behavior of
certain stochastic processes in the system. Here, we build on
our previous work in mode-switching based on statistical tests
[21]. Due to space constraints, we do not demonstrate this on
the example in Fig. 1 since this would necessitate including
other parts of the scenario; instead, we give an illustration
below.

Consider an agent team that heavily relies on radio
communication, so that it can be formed only if “The expected
probability of packet delivery over the radio is 90 percent or
more, evaluated over the last hour with a confidence of 95%”
(technically, such parameters can be set in the RCRS
simulator). This would be captured in TCOEL as msgDelivery
(time - 3600, time).probability > 0.9 withConfidence 0.95, where
msgDelivery is a Boolean timeseries recording whether an
expected packet was received or not. The whole expression
denotes a one-sided statistical test whether one can reject the
null hypothesis that the samples over the last hour have the
probability of being true less or equal to 0.9 with significance
level 𝛼 = 0.05.

C. TCOEF
TCOEF is a runtime framework (middleware in the form of

a Scala library) which executes the individual steps of
component’s MAPE-K loop and takes care of resolving
ensembles. Furthermore, it provides a basic extensible library
of reusable traits (Section IV B).

Internally, TCOEF translates the component instances and
ensemble types to a constraint optimization problem (COP) that
describes optimal instantiation of ensembles as defined in
Definition 4. The COP which encodes instantiation of
ensembles based on their respective ensemble instance
templates (𝐸A, 𝑉6A) as generated by functions 𝑔𝑠345 (Definition
1). This instantiation starts from root ensembles instances
(Definition 3 and line 42 in Fig. 1) and goes recursively over
the sub-ensemble groups (i.e. 𝐺 in Definition 1). The
membership of a component in an ensemble instance and sub-
ensemble instances are encoded as Boolean variables.
Membership conditions are encoded as hard constraints and
utility functions as soft constraints. The rules that determine if
an ensemble is valid (Definition 2) and determine ensemble
hierarchies are also encoded as hard constraints.

A solution found by the constraint solver corresponds to valid
instantiation of root ensemble instances. The optimal solution
found by the solver then implies the optimal instantiation of
ensemble hierarchy (or hierarchies).

V. EVALUATION

As stated in Sect. I, with TCOEL and TCOEF we aim at
providing (1) a language that allows for expressive yet reusable
specification of complex components and ensembles and (2) a
runtime framework for resolving such complex ensembles. We
therefore evaluated both the level of reuse that TCOEL enables
and the scalability of TCOEF in resolving complex hierarchical
ensembles.

A. Level of reuse enabled by TCOEL
To compare the development effort when using TCOEL

against employing a classical approach, we have developed two
versions of the RCRS use case—one exploiting the TCOEF
framework (as described in Sect. IV.A and IV.B) and another
one employing a single-purpose backtracking algorithm (both
are available at http://github.com/d3scomp/tcoef). The
TCOEL-based implementation is formed by a main class and
several additional classes defining auxiliary functions. The
main class with the additional classes amounts to roughly 400
LOC in total. It further uses three reusable traits—the connector
to the RoboCup simulator, map trait and data prediction trait.
Each of these traits is implemented as a set of classes with the
overall sizes of 560 LOC. Thus, in total, approximately a half
of the code is the business logic of the use case and another half
the reusable traits.

The implementation without TCOEL is a single Scala class
(with nested classes) with domain-dependent concepts
embedded in its code (those corresponding to the traits above).
Since it cannot take advantage of the solver used in TCOEL, it
implements a simple search heuristic to figure out the agent
teams (corresponding to ensembles in TCOEL). Overall, it
amounts to 1065 LOC—i.e. roughly two times the size of
business logic in the TCOEL-based solution. Note that the size
of the former is just slightly less than the overall size of the
latter—a small penalty for taking advantage of the reusable
traits. Though these measurements are difficult to generalize,
they suggest that the reusability of traits can bring an advantage
already when a trait can be reused across two use cases. Also,
TCOEL removes the need to provide code that figures out the
composition of agent teams. The process of resolving the agent
teams typically leads to developing some heuristic likely
combined with backtracking. Such technique leads intrinsically
to difficult development and debugging. As such it requires
significant elaboration effort, even though, due to recursion, the
size of actual code can be relatively small.

B. Scalability of ensemble resolution process in TCOEF
To evaluate the scalability of TCOEF, we benchmarked the

ensemble resolution process employed in the RCRS use case
(Sect. III). This process works in the following way: There is a
custom RCRS agent realized as a base class for every
component instance in the scenario (firefighters, fire station).
The class provides implementation for sensing, actuating and
message sending, and more importantly, allows a component to
act as an ensemble initiator. To this end, the class invokes the

ensemble resolution process (namely the Choco solver5) and
finally executes the tasks of the instantiated ensembles.

To evaluate the scalability of ensemble resolution, we ran the
RCRS use case on a small map (58 roads and 37 buildings) with
1 FireStation and variable number of fires and FireBrigades for
a predefined duration (100 simulation steps). At each step, the
COP solver was invoked. We measured the duration of each
step; the median duration for different number of fires and fire
brigades is depicted in Figure 2. We repeated the experiment
with a larger map (“Kobe” featuring 1602 roads and 757
buildings); median durations are depicted in Figure 3. In both
experiments we observed that, due to the exponential
complexity of ensemble resolution as COP, ensemble
resolution with 5 fires and 5 FireBrigades or more takes more
than 20 secs to complete, whereas “easier” cases were mostly
solved within 1 sec. We further comment on the scalability
limitations of our approach in the following section.

VI. DISCUSSION OF LIMITATIONS
As mentioned in Section IV.C, for resolving ensembles

TCOEF currently internally uses a centralized COP solver. We
could generally speed up the ensemble resolution by
incorporating a more optimized solver, however this does not
provide an answer to the intrinsic complexity of the problem. In
this respect, there are two promising methods to address the
problem: (a) employ multiple root ensemble instances since
their resolution processes are independent and can thus be
parallelized, or (b) employ a non-exhaustive search of the state
space by stopping the solver after some fixed time. This should
be combined with preconditioning the problem model in such a
way that reasonably good solutions are likely to be found first
and likely suboptimal solutions are discarded upfront. This can
be done by sorting the components in the order in which they
contribute to the system utility and by discarding those having
a smaller contribution to the utility than a given threshold. In
the RCRS use case, it means sorting FireBrigades by the
distance to the fire and removing those being too far.
Nevertheless, this may result in finding a non-optimal solution,
or even in not finding a solution at all (though it generally
exists); our initial experiments suggest that such relatively
simple means can significantly help in addressing the inherent
complexity problem without compromising the average quality
of the system too much [22].

Regarding the effectiveness of the proposed TCOEL
language, we have provided an initial assessment of the level of
reuse that can be achieved via using TCOEL compared to using
plain Scala. We acknowledge that a more complete evaluation
of the effectiveness and comprehensibility of TCOEL requires
one or more user studies (such as[23]). Nevertheless, the result
of such user studies will depend on the familiarity of the users
with Scala.

VII. RELATED WORK
As mentioned in Section I, component ensembles have been

5 http://www.choco-solver.org/

proposed to be realized for SSA. The original idea is based on
SCEL [6], [13], which proposes the specification of ensembles
implicitly (via attributes of component knowledge). Until now,
several frameworks based on the concept of ensembles have
already been developed and applied. Helena [7], JRESP
(http://jresp.sourceforge.net) and DEECo [1] are examples of
them. Specifically in the context of DEECo, we have we have
proposed a method for designing component ensembles [8],
[24] and discussed the typical software engineering
assumptions violated in software intensive CPS, which is

Figure 2: Ensemble resolution duration for different number of fires
and fire brigades on a small map in the RCRS. Durations more than 20

secs are depicted in grey.

Figure 3: Ensemble resolution duration for different number of fires
and fire brigades on the Kobe map in the RCRS. Durations more than

20 secs are depicted in grey.

mitigated by the ensemble [25]. Furthermore, in support of
ensembles, we have studied several aspects of underlying
networks, including their dynamically modified topologies
[17], [26]. The benefits of ensembles in DEECo-based
applications were also illustrated in [1].

The aforementioned frameworks differ in the semantic of
ensemble formation: In Helena, a component instance explicitly
indicates which of the ensembles it belongs to. In contrast, a
JRESP ensemble is an abstraction capturing the groups of
cooperating components, dynamically determined by means of
their attribute-based communication. Hence, ensembles are
realized implicitly in JRESP. (In a similar vein, AbaCuS [27],
though not an explicitly ensemble-based framework, employs
opportunistic and attribute-based communication among
components). Finally, DEECo ensembles are specified
explicitly. Their formation employs a “greedy” strategy—a
component is a member of each of the ensemble instance, the
membership condition of which it satisfies, and, at the same
time this condition is solely based on the component’s current
knowledge and cannot express, e.g., any reflection property
(like cardinality). This is in contrast to the much more
expressive power of TCOEL in membership conditions thanks
to the concepts like trait, cardinality, and utility function.

Team formation is intensively studied in the RCRS
community. Many approaches [28], based on different criteria,
have been already proposed and implemented within the
project, however their realizations are low-level and technically
single-purpose, not reusable elsewhere. To address the issue,
the Agent Development Framework (ADF, https://github.com/
RCRS-ADF/RCRS-ADF) [29] was recently proposed and has
started being employed in support of an easy reuse of code
among multiple teams participating in RCRS. ADF defines a
set of Java interfaces/base classes for individual aspects of
RCRS applications, e.g., tactics for platoons and centers, path
planning, and communication. This way it provides a basic
structure for creating agents. In general, ADF also uses traits,
yet quite low-level (plus, at the time of writing, lacking almost
any documentation) and reusable only within the RCRS
applications. Nevertheless, ADF lacks the ability to define
teams as first class architectural concepts.

Another framework targeting reuse in the RCRS applications
is RMASBench [30]—a testbed for multi-agent coordination
algorithms. The main focus of RMASBench is benchmarking
of distributed constraints optimization problem (DCOP)
algorithms used within this framework to resolve team
formation of agents. For this purpose, the API of RMASBench
adds an extra channel that allows an extensive exchange of
messages between agents. The DCOP algorithms in
RMASBench are modelled as reusable first-class entities and
when a problem is to be solved by reusing one of these
algorithms, just a scoring function needs to be implemented.

Multi-paradigm domain-specific and modeling languages
have recently emerged [31], similar to TCOEL in the aspect of
specification. Multi-paradigm modeling targets a combination
of multiple abstractions, formalisms and (meta-) modeling
levels into a single approach [32]. An example of such a
language is QAML [33], a quantitative analysis modeling

language constructed by following the multi-paradigm
modeling approach, i.e., for individual paradigm concerns it
reuses existing modeling languages (e.g., AADL for
architecture, MathML for math expressions), composing them
together into a single tool. Compared to TCOEL, however,
QAML is not designed as extensible nor, notably, supports a
notion similar to ensemble. Another example can be found in
[34], where the authors describe the process and challenges they
faced during designing a multi-paradigm-based software
architecture description language—but again as in the case of
QAML, their language is not designed to be extensible and
there is no notion similar to ensemble.

VIII. CONCLUSION
In this paper, we have focused on the problem of specifying

and forming complex, real-life dynamic groups of cooperating
components in Smart System Applications (SSA), which
manifest as heterogeneous landscape of various applications of
Cyber-Physical Systems, Internet of Things, and Smart Sensing
Systems. We have provided an extensible specification and also
implementation language TCOEL that allows specifying
component ensembles in an intuitive, reusable and, at the same
time, semantically rich way. Built as an internal DSL in Scala,
it thus serves as an implementation language as well. Moreover,
since Scala complies to JVM, it easily interoperates with Java
and other JVM- based languages.

A conservative way to design and implement an SSA use
case would be to introduce a dedicated DSL from scratch; such
an approach obviously lacks reusability when multiple use
cases featuring partly common concepts are to be considered.
On the contrary, the strength of our TCOEL is that it provides
a compositional way to design a DSL for a particular SSA
featuring ensembles. It does it by taking advantage of the
overlap that exists in SSA domains in terms of paradigms they
exploit in modeling the reality. These paradigms are reflected
as reusable traits in the library being a part of TCOEF—the
software framework which implements TCOEL. The viability
of TCOEL and the traits was demonstrated on a use case
inspired by RCRS—a multi-agent solution to disaster response
scenarios where dynamic teams of agents/components are an
inherent necessity. This use case and, primarily, TCOEL
together with TCOEF are publicly available as an open source
library at http://github.com/d3scomp/tcoef.

ACKNOWLEDGEMENT
The research leading to these results has received funding from
the ECSEL Joint Undertaking (JU) under grant agreement No
783221. Also, this work was partially supported by the Czech
Science Foundation project 20-24814J.

REFERENCES
[1] T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch, “Software Abstractions

for Component Interaction in the Internet of Things,” Computer, vol. 49,
no. 12, pp. 50–59, Dec. 2016, doi: 10.1109/MC.2016.377.

[2] M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, Eds., Software engineering
for collective autonomic systems: the ASCENS approach. Cham:
Springer, 2015.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of MCC’12, Helsinki,
Finland, 2012, pp. 13–16, doi: 10.1145/2342509.2342513.

[4] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A
Platform for Internet of Things and Analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments, Springer, Cham, 2014,
pp. 169–186.

[5] G. Fairbanks, “Architectural Hoisting,” IEEE Softw., vol. 31, no. 4, Jul.
2014, doi: http://doi.ieeecomputersociety.org/10.1109/MS.2014.82.

[6] R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “A Formal Approach
to Autonomic Systems Programming: The SCEL Language,” ACM Trans.
Auton. Adapt. Syst., vol. 9, no. 2, pp. 7:1–7:29, Jul. 2014, doi:
10.1145/2619998.

[7] R. Hennicker and A. Klarl, “Foundations for Ensemble Modeling – The
Helena Approach,” in Specification, Algebra, and Software, S. Iida, J.
Meseguer, and K. Ogata, Eds. Springer, 2014, pp. 359–381.

[8] T. Bureš, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “The Invariant Refinement Method,” in Software Engineering for
Collective Autonomic Systems, M. Wirsing, M. Hölzl, N. Koch, and P.
Mayer, Eds. Springer International Publishing, 2015, pp. 405–428.

[9] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A
Comprehensive Step-by-Step Guide, Third Edition. Artima Press, 2016.

[10] C. Artho, K. Havelund, R. Kumar, and Y. Yamagata, “Domain-specific
languages with scala,” in International Conference on Formal
Engineering Methods, 2015, pp. 1–16.

[11] A. Rao and M. P. Georgeff, “BDI agents: From theory to practice,” in
Proc. of the First International Conference on Multi-Agent Systems, 1995,
pp. 312–319.

[12] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “DEECo – an Ensemble-Based Component System,” in Proc. of
CBSE’13, 2013, pp. 81–90.

[13] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese, “A Language-Based
Approach to Autonomic Computing,” in Formal Methods for
Components and Objects, vol. 7542, B. Beckert, F. Damiani, FrankS. de
Boer, and MarcelloM. Bonsangue, Eds. Springer, 2013, pp. 25–48.

[14] C. Kroiß and T. Bureš, “Logic-based modeling of information transfer in
cyber–physical multi-agent systems,” Future Gener. Comput. Syst., vol.
56, pp. 124–139, Mar. 2016, doi: 10.1016/j.future.2015.09.013.

[15] R. A. Ali et al., “DEECo Computational Model – I,” Technical report no.
No. D3S-TR-2013-01, , Dep. of Distributed and Dependable Systems,
Charles University in Prague, 2013.

[16] J. Barnat, N. Beneš, T. Bureš, I. Černá, J. Keznikl, and F. Plášil, “Towards
Verification of Ensemble-Based Component Systems,” in Formal Aspects
of Component Software, J. L. Fiadeiro, Z. Liu, and J. Xue, Eds. Springer
International Publishing, 2014, pp. 41–60.

[17] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “Gossiping Components for Cyber-Physical Systems,” in Software
Architecture, P. Avgeriou and U. Zdun, Eds. Springer International
Publishing, 2014, pp. 250–266.

[18] T. Bures, P. Hnetynka, F. Krijt, V. Matena, and F. Plasil, “Smart
Coordination of Autonomic Component Ensembles in the Context of Ad-
Hoc Communication,” in Proceedings of ISOLA 2016, Corfu, Greece,
2016, vol. 9952, pp. 642–656, doi: 10.1007/978-3-319-47166-2_45.

[19] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[20] R. Al Ali, T. Bures, I. Gerostathopoulos, J. Keznikl, and F. Plasil,
“Architecture Adaptation Based on Belief Inaccuracy Estimation,” in
Proceedings of WICSA 2014, Sydney, Australia, 2014, pp. 87–90, doi:
10.1109/WICSA.2014.20.

[21] T. Bures, P. Hnetynka, J. Kofron, R. Al Ali, and D. Skoda, “Statistical
Approach to Architecture Modes in Smart Cyber Physical Systems,” in
Proceedings of WICSA 2016, Venice, Italy, 2016, pp. 168–177, doi:
10.1109/WICSA.2016.33.

[22] F. Krijt, Z. Jiracek, T. Bures, P. Hnetynka, and F. Plasil, “Automated
Dynamic Formation of Component Ensembles,” in Proceedings of
Modelsward 2017, Porto, Portugal, 2017, pp. 561–568, doi:
10.5220/0006273705610568.

[23] G. Dubochet, “Computer Code as a Medium for Human Communication:
Are Programming Languages Improving?,” in Proceedings of the 21st
Working Conference on the Psychology of Programmers Interest Group,
2009.

[24] J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and N.
Hoch, “Design of ensemble-based component systems by invariant
refinement,” in Proceedings of the 16th International ACM Sigsoft
symposium on Component-based software engineering, 2013, pp. 91–100.

[25] I. Gerostathopoulos, J. Keznikl, T. Bures, M. Kit, and F. Plasil, “Software
Engineering for Software-Intensive Cyber-Physical Systems,” in Proc. of
CPSData workshop in INFORMATIK’14. To Appear., 2014.

[26] M. Kit, F. Plasil, V. Matena, T. Bures, and O. Kovac, “Employing Domain
Knowledge for Optimizing Component Communication,” in Proceedings
of CBSE 2015, Montreal, Canada, 2015, pp. 59–64, doi:
10.1145/2737166.2737172.

[27] Y. A. Alrahman, R. D. Nicola, and M. Loreti, “On the Power of Attribute-
Based Communication,” in Proceedings of FORTE 2016, Heraklion,
Crete, Greece, 2016, vol. 9688, pp. 1–18, doi: 10.1007/978-3-319-39570-
8_1.

[28] J. Parker, E. Nunes, J. Godoy, and M. Gini, “Exploiting Spatial Locality
and Heterogeneity of Agents for Search and Rescue Teamwork,” J. Field
Robot., vol. 33, no. 7, pp. 877–900, Oct. 2016, doi: 10.1002/rob.21601.

[29] K. Takayanagi et al., “Implementation of NAITO-ADF and its Team
Design NAITO-Rescue 2015,” in Proc. of RoboCup Intl. Symp. 2015,
Hefei, China, 2015.

[30] F. Maffioletti, R. Reffato, A. Farinelli, A. Kleiner, S. Ramchurn, and B.
Shi, “RMASBench: A Benchmarking System for Multi-agent
Coordination in Urban Search and Rescue,” in Proceedings of AAMAS
2013, St. Paul, MN, USA, 2013, pp. 1383–1384.

[31] A. Horst and B. Rumpe, “Towards Compositional Domain Specific
Languages.,” in Proceedings of MPM 2013, Miami, USA, 2013, pp. 1–5.

[32] P. J. Mosterman and H. Vangheluwe, “Guest Editorial: Special Issue on
Computer Automated Multi-paradigm Modeling,” ACM Trans. Model.
Comput. Simul., vol. 12, no. 4, pp. 249–255, Oct. 2002, doi:
10.1145/643120.643121.

[33] D. Blouin, E. Senn, K. Roussel, and O. Zendra, “QAML: a multi-
paradigm DSML for quantitative analysis of embedded system
architecture models,” in Proceedings of MPM ’12, Innsbruck, Austria,
2012, pp. 37–42, doi: 10.1145/2508443.2508450.

[34] D. Balasubramanian, T. Levendovszky, A. Dubey, and G. Karsai,
“Taming Multi-Paradigm Integration in a Software Architecture
Description Language,” in Proceedings of MPM 2014, Valencia, Spain,
2014, pp. 67–76.

