
 
Abstract—Smart system applications (SSA)—a heterogeneous 
landscape of applications of Internet of Things, Cyber-Physical 
Systems, and Smart Sensing Systems—are composed of 
autonomous yet inherently cooperating components. An 
important problem in this area is how to hoist the cooperation of 
software components forming dynamic groups —ensembles—at 
the architectural level of an SSA. This is hard since ensembles can 
overlap, be nested, and dynamically formed and dismantled based 
on several criteria. A related problem is how to combine 
component and ensemble specification with a well-established 
language supported on multiple platforms. To target these 
problems, we propose a specification and implementation 
language TCOEL (Trait-based Component Ensemble Language) 
based on Scala internal DSL, to describe both the architecture and 
formation of dynamic ensembles of components and their 
functional internals. To raise the level of expressivity, we introduce 
the concept of domain-specific extensions (traits) to the TCOEL 
core to reflect different paradigms’ concerns—such as movement 
in a 2D map, state-space modeling of physical processes, and 
statistical reasoning about uncertainty. This allows for configuring 
TCOEL for the needs of a specific SSA use case, and, at the same 
time, facilitates reuse. To evaluate TCOEL, we show how it can be 
beneficially used in addressing the coordination of agents in a 
RoboCup Rescue Simulation application. 
 

Index Terms—architecture description language, autonomic 
components, component ensembles, smart cyber-physical systems 
 

I. INTRODUCTION 
mart systems manifest as heterogeneous, interconnected 
landscape of various applications of Internet of Things 

(IoT), Cyber-Physical Systems (CPS), and/or Smart Sensing 
Systems. A smart system application (SSA) is typically 
composed of hardware units running upon specific network(s) 
and of associated software components, achieving smartness by 
sensing and operation, both autonomous and collaborative. 
Responding to the dynamic nature of the environment in which 
the smart systems exist, such collaboration typically needs to be 
dynamically established to address situations localized both 
temporarily and spatially. From the software design and 
development perspective, such cooperation needs to take place 
at the syntactic level (e.g., API matching, language 
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interoperability), at the semantic level (e.g., common 
vocabulary, contracts for assume-guarantee reasoning), and at 
the strategic level (such as sharing of goals performed by high-
level tasks). In this work, we focus on cooperation of software 
components at the strategic level in the first place—assuming 
that they form dynamic groups, also known as component 
ensembles [1], [2].  Specifically, we presume that: 

• There are strategic-level tasks to be performed and 
joint goals to be achieved in the given SSA.  

• The SSA has strategic-level tasks that can be 
performed only by component ensembles.  

• In the SSA, component ensembles are formed and 
dismantled dynamically, based upon the actual state of 
the SSA and its environment. 

• Components are partially autonomous entities that can 
participate in ensembles (become their members).   

• Components proactively sense the SSA’s environment 
and provide their knowledge to other components to 
allow them to take smart and well-founded decisions. 

For example, consider a smart emergency coordination 
system where fire fighters and medical first responders carry 
mobile hand-held devices running software components 
supporting the bearers’ individual missions. Obviously, 
different ensembles can be formed of these components in order 
to let their bearers act autonomously and still cooperate in the 
complex, multi-stakeholder tasks of rescue operations (e.g. 
moving as a group towards a fire scene and/or approaching 
those needing emergency medical care).  

There are many other smart systems where ensembles are 
inherently involved; for instance, it would be natural to apply 
them in the examples provided in [3], [4], such as on-street 
parking meters, employing swarms of sensors in a vehicle, and 
a number of applications in the area of road-side computing and 
intelligent transportation. Thus, specifying and implementing 
software component ensembles in an intuitive, reusable and 
semantically rich way is an important challenge in the area of 
smart systems. 

Moreover, ensembles have been suggested to hoist the 
component cooperation and knowledge distribution concerns in 
a dynamically changing CPS at the level of software 
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architecture3 [1]. This has been done in the context of 
specialized component models and languages such as SCEL 
[6], DEECo [1], and Helena [7]. By a logical condition upon the 
ensemble and component actual states, an ensemble’s 
description determines its member components and which 
particular roles in the ensemble they play. Further, it embodies 
the cooperation among the member components towards some 
strategic-level task(s). Ensembles should be formed according 
to a method that takes as input the overall goals of the system 
and decomposes them For details, including a method of 
ensemble design, we refer the reader to our work [8].  

Problem statement. Despite the work done so far in 
ensemble-based systems (including our own work on DEECo), 
it is still hard to put these ideas into action in development of 
complex real-life systems where ensembles may overlap, be 
nested, dynamically formed and dismantled in a distributed 
environment built upon multiple network platforms. Obviously, 
in such settings, building the necessary programming 
abstractions and machinery for ensemble specification and 
formation from scratch is practically infeasible. What is missing 
in particular, is an easy, flexible, and elegant way of supporting 
the component and ensemble concepts in a well-established, 
“ubiquitous” programming language available at multiple 
platforms. 

Main idea of contribution. We aim at addressing the 
problem mentioned above by proposing programming 
abstractions for ensemble and component specification. In 
particular, we strive to address and balance the specification 
simplicity and expressivity of the strategic-level tasks fulfilled 
by either an ensemble or by a single component. Taking a 
pragmatic approach, we propose a specification and rich 
architecture description language on top of Scala [9]. This 
potent multiple-purpose language, running on JVM, has been 
designed as extensible (scalable in Scala terms). Thanks to this 
property, it is possible not only use Scala as an implementation 
language but also as a specification, domain specific language 
by enhancing Scala’s core features by domain specific 
constructs [10]. Moreover, owing to the use of JVM, Scala 
programs seamlessly interoperate with Java and other JVM-
based languages; specifically, this allows an easy combination 
of specification of ensembles with existing libraries and SSA 
applications in Java.  

Along these lines, we take advantage of the observation that 
there are a number of recurring concepts in articulating 
membership conditions of ensembles. For instance, some 
ensembles are formed based on number and type of members 
(e.g. “group together components representing 3 rescuers”), 
some on spatial constraints (e.g. “group together components 
representing firefighters that are physically close”), some on 
predictions of certain values/outcomes (e.g. “group together 
components based on the estimated number of components 
necessary to complete task A in time”). We have further 
observed that some of these concepts are independent of the 
particular SSA domain (e.g. number of members), whereas 
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others depend on it (e.g. predictive functions, map-based 
routing functions). The latter concepts we propose to capture in 
reusable language extensions—traits, used as building blocks 
of specification languages in allied domains. 

Goals. In summary, the main goal of the paper is to propose 
and implement a specification language for SSA termed Trait-
based COmponent Ensemble Language (TCOEL), using the 
technique of Scala internal DSL [10]. TCOEL (1) supports 
partial autonomicity of components, (2) allows both nested 
ensembles (hierarchies) and overlapping ensembles, and (3) 
makes ensemble formation a part of component activities. 
Further, to increase the expressivity and reuse of ensemble 
descriptions, we introduce the concept of reusable traits 
embodying particular domain-dependent concepts and further 
device a way of mixing the traits with the core (domain-
independent) features of TCOEL. This enables to tune up 
TCOEL for a specific application case. 

An additional goal is to shortly report on Trait-based 
COmponent Ensemble Framework (TCOEF)—the runtime 
framework implementing TCOEL and providing some domain-
dependent traits.   

Structure of the text. Section II gives an overview of the 
main ideas in the design of TCOEL and describes the core 
concepts of the language. Section III presents the use case 
motivating our work on ensemble formation in SSA. In Section 
IV, the language TCOEL and framework TCOEF are described 
in more detail together with the TCOEL extension by domain-
dependent traits. An evaluation on the application development 
effort when using TCOEL is provided in Section V, together 
with a discussion of limitations of the TCOEF framework. 
Finally, Section VI compares our approach to related work on 
component ensemble formation, and Section VII concludes 
with an overview of the contributions. 

II. CORE CONCEPTS AND THEIR SEMANTICS 

A. Core concepts 
In our approach, a component is an autonomic (potentially 

mobile) entity, such as an agent mentioned later in Section III. 
It entails (i) a data structure (knowledge) reflecting its state and 
awareness of other components’ partial state (in terms of belief 
[11]), last readings of its sensors and actuators, and (ii) periodic 
activity. Within this activity, the component operates upon its 
knowledge and interacts with other components and its 
environment by sensing and actuating. Thus, component’s 
knowledge conceptually comprises local knowledge, which 
reflects the state of the component itself, and a snapshot of the 
partial knowledge of other components and environment 
(mirror knowledge).  

An ensemble groups a number of member components to 
support their cooperation. It dynamically changes as the 
members’ knowledge and thus the ability to be a member is 
modified. This change is determined by satisfaction of 
membership condition indicated in the ensemble’s 



specification, which is a predicate defined over the 
components’ knowledge and current ensemble status. For 
instance, a membership condition reads: “Not more than three 
components that are spatially close to a point of interest”. The 
ensemble actively drives cooperation of components by (i) 
accepting one or more roles they offer within the ensemble 
(e.g., which component extinguishes the fire and which one 
protects the nearby buildings by cooling them down with water) 
and (ii) performing its strategic-level task(s) related 
computation (task computation for short). Technically, an 
ensemble has its initiator—a component that instantiates it, 
triggers its task computation, and performs communication 
with other member components to (1) collect required 
knowledge for the ensemble and to (2) distribute computational 
results of it back to its members so that they can update their 
knowledge, both local and mirror. 

Ensemble type serves as a pattern for multiple ensemble 
instances. Each of the instances has its specific initiator (also 
referred to as “coordinator” in other works [12], [13]. For 
example, a specification of FireBrigade ensemble type serves as a 
pattern to creating FireBrigade ensemble instances, each 
responding one of the multiple fire incidents taking place at the 
same time. For the sake of brevity, by “ensemble” we mean 
“ensemble instance” if “type” is not explicitly mentioned.  

To reflect the nature of processes and responsibilities of the 
real-world stakeholders in an SSA, hierarchical decomposition 
of ensembles takes place. The rule of thumb is that members of 
a child ensemble must be members of its parent ensemble too. 
As such, the highest-level ensemble – root (typically a singleton 
instance) – corresponds to an overall joint goal and serves to 
divide strategic-level tasks among its children. Nevertheless, 
multiple root ensembles may coexist in a single SSA – this is, 
in particular, beneficial in distributed settings.  In a similar vein, 
ensembles can overlap in terms of sharing their members. This 
naturally reflects the fact that a component may have multiple 
roles by which can contribute to different strategic-level tasks 
(e.g. refilling water and observing surroundings for potential 
fire). In other words, a component can be a member of several 
ensembles at the same time. 

B. Semantics 
The semantics of ensembles and their instantiation can be 

seen as two separate problems; (a) how to determine and gather 
the state of components in a distributed system to correctly 
decide how to instantiate ensembles, and (b) how to instantiate 
ensembles provided that the state of components is known.  

The gathering of knowledge needed to establish ensembles 
in distributed settings has been extensively tackled in our 
previous publications. As such, we do not focus on this in this 
paper and rather refer the reader to [1], [14], [15]. Likewise, we 
do not focus on the semantics of nondeterminism in component 
knowledge updates caused by their internal activities upon the 
local and mirror knowledge. Here we refer the reader to our 
work [16]–[18]. 

In the rest of this paper, we focus on how to specify and 
instantiate ensembles. Compared to the previous works on 
ensembles, we feature much richer semantics that covers 

hierarchical ensembles and also the ability to specify different 
variants of how to instantiate ensembles and decide the best. 

Formally, we see the instantiation of ensembles as a 
constraint optimization problem. For the sake of dealing with 
this problem, we define components and ensembles as follows. 

 
Component types and component instances 

We distinguish component types and component instances. 
Each component instance 𝑐 is instantiated from a particular 
component type 𝐶. A component type 𝐶 is associated with a set 
of attributes 𝐾 that form the knowledge (i.e. the state) of 𝑐. Each 
𝑐 is associated with a valuation of its knowledge – i.e. a function 
𝑉% that assigns each attribute 𝑘 ∈ 𝐾 a particular value.  

 
Definition 1 (Ensemble type): 
An ensemble type 𝐸 is a tuple (𝑃, 𝑅, 𝐺,𝑀, 𝑈, 𝑇), where: 
• 𝑃 is a set of ensemble parameters; 
• 𝑅 is a set of component roles in E;  
• 𝐺 is a set of sub-ensemble groups in E; 
• 𝑀 is a membership condition; 
• 𝑈 is a utility function; 
• 𝑇 is a task function. 
 

Each component role 𝑟 ∈ 𝑅 is associated with a function 
𝑟345(𝑉6) that for a given valuation of ensemble parameters 𝑉6  
determines the component instances that may be selected for 
the role (i.e. the powerset 289:;(<=) is the domain for the role 
𝑟). Each sub-ensemble group 𝑔 ∈ 𝐺 is associated with function 
𝑔𝑠345(𝑉6 ) that for a given valuation of ensemble parameters 
𝑉6  yields a set of tuples @𝐸A, 𝑉6AB. Each (𝐸A, 𝑉6A) – ensemble 
instance template – prescribes the ensemble type and 
parameters for instantiation of a potential sub-ensemble in the 
sub-ensemble group 𝑔. The membership condition (predicate) 
𝑀 determines the condition under which an ensemble instance 
based on E is valid. The predicate 𝑀 is parameterized by 𝑉6 , the 
selection of component instances determined by 𝑟345(𝑉6)  for 
each role 𝑟 ∈ 𝑅, and the set of sub-ensemble instances 
determined by 𝑔𝑠345(𝑉6 ) for each sub-ensemble group 𝑔 ∈ 𝐺. 
Utility function U yields values upon which a total order ≤ is 
defined. Similarly to 𝑀, it is parameterized by 𝑉6 , selection of 
component instances to each role 𝑟 ∈ 𝑅, and set of sub-
ensemble instances for each sub-ensemble group 𝑔 ∈ 𝐺. Task 
function T generates a set of tasks to be executed by instances 
of E (for given 𝑉6) for 𝑉6 , selection of component instances to 
each role 𝑟 ∈ 𝑅, and a set of sub-ensemble instances for each 
sub-ensemble group. Note that we intentionally do not provide 
a formal model for the tasks here because the nature of a task is 
not relevant for how ensembles are instantiated. The tasks are 
elaborated in Section IV in relation to the materialization of the 
semantics in the Scala language. 
 
Definition 2 (Ensemble instance): 
An ensemble instance 𝑒 of ensemble type 𝐸 =
(𝑃, 𝑅, 𝐺,𝑀,𝑈, 𝑇) is a tuple	(𝑉6G, 𝑉HG, 𝑉IG), where: 
• 𝑉6G  is a function that assigns a value (of the appropriate type) 

to each parameter 𝑝 ∈ 𝑃; 



• 𝑉HG	 is a function that assigns a subset of component instances 
selected as the possible members of e of 𝑟345(𝑉6G) to each 
component role 𝑟 ∈ 𝑅; 

• 𝑉IG  is a function that assigns a set of ensemble instances 𝐼L to 
each sub-ensemble group 𝑔 ∈ 𝐺.  
 
Each ensemble instance 𝑒M ∈ 𝐼L must comply (see below) 

with some  (𝐸A, 𝑉6A) from the 𝑔𝑠345(𝑉6G	) associated with 𝑔. The 
projection from 𝐼L to 𝑔𝑠345(𝑉6G) does not have to be surjective 
(i.e. not all ensemble instance templates in  𝑔𝑠345(𝑉6G) have to 
be actually instantiated). 

Formally, for every  𝑒M = (𝑉6
M, 𝑉H

M, 𝑉I
M) 	∈ 𝐼L there exists an 

ensemble instance template @𝐸A, 𝑉6AB ∈ 𝑔𝑠345(𝑉6G) such that	𝑒M 
complies with the type (i.e. 𝐸A is ensemble type of 𝑒M and 𝑉6

M =
𝑉6A).  

An ensemble instance e is valid only if the following 
conditions are true: 
• The membership condition is satisfied – i.e. 𝑀(𝑉6G, 𝑉HG, 𝑉IG)	 

is true; 
• All sub-ensemble instances are valid – i.e. ∀𝑔 ∈ 𝐺, ∀𝑒O ∈
𝑉IG(𝑔): (𝑒O	is	valid); 

• An ensemble instance is not transitively its own child 
ensemble instance (i.e. there is no cycle in the ensemble 
instance hierarchy (tree)); 

• Any component instance that is a member of a child 
ensemble instance is also member of its parent ensemble 
instances higher in the ensemble hierarchy. 

 
The utility of the ensemble instance e is 𝑈G = 𝑈(𝑉6G, 𝑉HG, 𝑉IG). 

Note that by being parameterized by 𝑉IG , the utility function 𝑈 
can aggregate the utilities of sub-ensemble instances. 
 
Definition 3 (Root ensemble instance): 
An ensemble instance is called root ensemble instance if it is 
not a sub-ensemble of another ensemble instance. We denote 𝐴 
the set of all root ensemble instances. 
 

Let 𝐴𝑇345 be the set of root ensemble instance templates 
(𝐸A, 𝑉6A). Each such template determines how to potentially 
instantiate exactly one root ensemble instance – i.e. for each 
root ensemble instance 𝑒M = @𝑉6

M, 𝑉H
M, 𝑉I

MB ∈ 𝐴 there is exactly   
one ensemble instance template @𝐸A, 𝑉6AB ∈ 𝐴𝑇345 such that 𝑒M 
complies with this ensemble instance template.  

For the sake of instantiation of ensembles, we also associate 
each tuple @𝐸A, 𝑉6AB ∈ 𝐴𝑇345 with a component instance 𝑐 ∈ 𝐶 
responsible for instantiating the corresponding ensemble 
instance 𝑒M. We call the component 𝑐 the initiator of the 
ensemble instance 𝑒M. 
 
Definition 4 (Optimal instantiation of ensembles): 
A valid ensemble instance 𝑒 = (𝑉6, 𝑉H, 𝑉I) of type 𝐸 is optimal 
with respect to ensemble instance template (𝐸, 𝑉6) (that 
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specifies how to instantiate the ensemble instance) if there is no 
other valid ensemble instance 𝑒X = (𝑉6X , 𝑉HX , 𝑉IX) that complies 
with the ensemble instance template (𝐸, 𝑉6) and 𝑈G < 𝑈GX. 

Ensembles in a system are optimally instantiated (with 
respect to 𝐴𝑇345) if for each ensemble instance template 
@𝐸A, 𝑉6AB ∈ 𝐴𝑇345)	, one of the following conditions hold: 
• There exists a corresponding 𝑒M = @𝑉6

M, 𝑉H
M, 𝑉I

MB ∈ 𝐴 that 
complies with @𝐸A, 𝑉6AB and is optimal; 

• There exists no valid 𝑒M = @𝑉6
M, 𝑉H

M, 𝑉I
MB that would comply 

with @𝐸A, 𝑉6AB. 
 
As mentioned above, we will use the terms “component” and 

“ensemble” to refer to a component instance and ensemble 
instance, respectively, and explicitly refer to their respective 
types only when needed.  

C. Instantiation of ensembles 
The SSA establishes ensembles to always achieve optimal 

instantiation of ensembles (as per Definition 4). The 
instantiation is partitioned per root ensemble instances. Since 
these are mutually independent, the instantiation can be seen as 
a set of (isolated) constrain optimization problems (COPs). For 
each root e the goal of the associated COP is identifying those 
component instances that should be the ensemble members 
throughout the ensemble hierarchy with e as the root. 
Technically, the COP is solved by the initiator component 
instance associated with e. In essence, the initiator gathers the 
knowledge needed to solve the COP, solves it and runs all the 
task defined by T functions of the ensemble types the ensemble 
instances comply with (bottom up throughout the ensemble 
hierarchy). Finally, the results of the tasks are propagated back 
to the member component instances of these ensembles. Since 
all the root ensemble instances are independent, all this happens 
in parallel across all initiators in the SSA. 

III. USE CASE—ROBOCUP RESCUE SIMULATION  
In this Section, we describe the use case serving to exemplify 

TCOEL constructs and semantics and motivate our decisions in 
its design.  

RoboCup Rescue Simulation4 (RCRS) is a research and 
educational project targeted on evaluation of multi-agent 
solutions in disaster response scenarios. The research on the 
project is stimulated by the annual RoboCup rescue league, one 
of the most important competitions in robotics. RCRS provides 
a simulation platform that imitates a city after an earthquake. 
The simulation consists of a city map which includes streets, 
intersections, and buildings, and of stationary and platoon 
agents. Buildings may collapse due to an earthquake; they may 
also be on fire. Street fragments may be blocked by debris. 
Stationary agents include Fire Stations, Police Offices and 
Ambulance Centers. Platoon agents include Fire Brigades, 
Police Forces, and Ambulance Teams. Each type of the platoon 
agents has specific strategic tasks to achieve and different 
capabilities. Fire Brigades are responsible for extinguishing 



fires, Police Forces for removing blocking debris from the 
streets, and Ambulance Teams for rescuing humans by 
unburying them and carrying them to Refuges (special type of 
buildings). Importantly, platoon agents have a limited view of 
the world—based on their line of sight—and can communicate 
with each other and with the stationary agents either face-to-
face (when being close-by) or by transmitting messages via 
unreliable radio channels. 

In this setting, one of the challenges RCRS raises is how to 
form and dismantle teams at runtime of platoon agents in order 
to efficiently coordinate search and rescue operations. A team 
is formed as (potentially heterogeneous) group of agents, with 
each agent featuring a particular team-specific role in 
contributing to the strategic task(s) of the team. Agents are 
selected for a particular role based on several criteria (which 
can be also combined), in particular: 
• Based on agent type. A team of Fire Brigades and 

Police Forces can enable the former to get information 
on a route to the fire that is cleared of blocking debris. 
This is reflected in the set of component roles of the 
ensemble definition (Section II.B). 

• Based on number of agents. A team may require a 
certain number of Fire Brigades to cooperatively work 
on extinguishing the fire in a building. This is reflected 
in the membership condition of the ensemble definition 
(Section II.B).  

• Based on a soft optimization rule. Among the Fire 
Brigades eligible for participating in a team, prefer those 
that are closer to the fire. This is reflected in the utility 
function of the ensemble definition (Section II.B).  

• Based on spatial proximity. Platoon agents that are 
close-by can form a team in order to rendezvous and 
share updates regarding street blockages (by debris) via 
face-to-face communication. In TCOEL, this criterion is 
reflected in the map trait (Section IV.B). 

• Based on temporal proximity. Only those buildings on 
fire are extinguished that can be reached before they are 
burnt out (the RCRS simulator assumes burnt out 
buildings need not be responded by Fire Brigades). In 
TCOEL, this criterion is reflected in the map trait 
(Section IV.B). 

• Based on estimated cooperation effort. Upon detecting 
a fire, Fire Brigades can form a team composed of the 
(estimated) minimum number of Fire Brigades 
necessary to prevent the fire from spreading to nearby 
buildings. In TCOEL, this criterion is reflected in the 
data prediction trait (Section IV.B). 

• Based on the probability of effective cooperation. 
Cooperation is decided based on the probability of 
successful communication via unreliable wireless 
channels. For example, if communication reliability 
falls below a certain level, a team which relies on regular 
rendezvous of agents to exchange data over close-range 
(i.e. face-to-face) communication is chosen over a team 
where all agents communicate via long-range radio. In 
TCOEL, this criterion is reflected in the statistics trait 

(Section IV.B). 

IV. TCOEL AND TCOEF 
In this Section, we articulate the criteria for ensemble 

formation employed for the use case in Section III via the 
TCOEL concepts. We also briefly describe a prototype 
implementation of TCOEL containing the engine forming the 
ensembles at runtime and trait library—TCOEF framework 
(middleware) available at http://github.com/d3scomp/tcoef. 

We split the criteria for ensembles’ formation (used in 
specification of ensemble types, see definitions in Section II.B) 
in two categories: (i) Based on the core concepts that are 
independent of a particular SSA domain, (ii) based on the 
concepts that depend on particular SSA domains; we group the 
latter into reusable traits. By trait, we denote a set of concepts 
that extend the core of TCOEL and can be used optionally; this 
is similar to object-oriented languages where a trait (sometimes 
called mixin), is typically a set of orthogonal methods that can 
be attached to a class to extend its behavior.  

The concepts featured by a trait are specific to a particular 
SSA domain (e.g. connected mobility, emergency coordination, 
home automation, robotic swarm) or to a particular aspect of 
the domain (e.g. navigation in 2D space). This makes the traits 
reusable across multiple use cases. For example, the “map” trait 
reflects the concept of spatial proximity and can be reused in 
applications that belong either to the connected mobility 
domain or to the domain of emergency coordination in a city. 
In contrast, criteria that do not depend on a particular SSA 
domain are universal in ensemble type specification, i.e. they 
typically make sense in any application domain. For example, 
the “type” of an agent is a possible criterion for ensemble 
formation in any application (irrespective of its domain). 

Thus, an ensemble type in an SSA can be specified by using 
the domain-independent concepts and augmenting them with 
selected traits. 

A. TCOEL, an example 
In TCOEL we represent (specify) both component and 

ensemble types as Scala classes that extend the abstract classes 
Component and Ensemble respectively. Furthermore, we use the 
power of Scala to define new control structures (constructs for 
short) to express the operation steps of components and to 
declare membership condition and task computation of an 
ensemble. Technically, these constructs are realized as Scala 
functions with a “by-name” parameter [9]. 

We exemplify our approach on a part of the RCRS use case 
(Section III) illustrated in Fig. 1. Here the abstract classes 
Component and Ensemble are inherited by application-specific 
classes—lines 4, 41, 66, 81, 113. In particular, a FireStation 
component is expected to form an ensemble with FireBrigade 
components in order to extinguish the fire of a building and 
protect the surrounding ones. Similarly, there are components 
representing other RCRS agents (AmbulanceTeam, etc.). Due to 
space limits, Fig. 1 does not show how components are actually 
instantiated; for simplicity let us assume there exists a singleton 
of FireStation and n instances of FireBrigade. To achieve the 
required ensembles, the ensemble FireCoordination (line 66), 



initiated by FireStation, introduces two sets of child 
ensembles—extinguishTeams and protectionTeams (lines 68-
73). FireCoordination is a root ensemble (Section II.B). The 
members of these child ensembles cover disjoint locations on 
the city map. Members of an ensemble ProtectionTeam are 
selected from brigades (line 81, instances of FireBrigade) and 
are associated with a particular fireLocation; the selection is 
determined by the membership construct (lines 86-99) specifying 
that only the instances of FireBrigade which are either idle or 
already at the scene given by fireLocation are considered. 
Additionally, they have to be at a distance from which they can 
reach the fireLocation before the building there burns down 
(otherwise, there is no reason to go there). Plus, their number 
has to be 2 or 3. In the taskComputation construct (lines 106-110) 
the selected brigades are assigned to specific fire locations. The 
ensemble type ExtinguishTeam is specified similarly.  

Below we elaborate more on the TCOEL component and 
ensemble semantics. 

Components. In support of self-adaptation, a component 
operates on a periodic basis by performing the classical MAPE-
K loop [19]. This is done in the following four steps activated 
by TCOEF.  

In Monitoring, the component senses data from its sensors 
and typically receives messages from the other components that 
are initiators of the ensembles it is a member of; as a follow-up 
it accordingly updates its knowledge (e.g., line 5), both local 
and mirror (the types of which are defined in Model). In TCOEL, 
this step is specified by the sensing construct (lines 8-13,44-46).  

In Analysis, the component first determines the potential 
activities it can perform, given its state of knowledge. To 
achieve its conceptual autonomy and play its role in the current 
requirement of ensemble, the component’s activities are 
controlled by its behavior states (BState, line 6). Each state 
determines a particular component activity (e.g. going to refill 
water, seeking refuge in case a firefighter is hurt). A component 
can be in multiple behavior states at the same time, which 
corresponds to the ability to simultaneously fulfil several roles. 
The construct constraints (lines 15-19) serves to indicate (i) 
dependency of a behavior state on a particular value in 
component knowledge and (ii) conflicting states (e.g. moving 
and observing environment). To break ties in situation where 
different conflicting behavior states could be selected given the 
current valuation of knowledge, the utility construct provides a 
utility function, allotting weight to behavior states (lines 25-27).  

In Planning initiation of ensembles takes place. This involves 
solving the constraint optimization problem (Section II.C) 
stemming from the ensemble type specification (membership 
condition, utility function) and from the current knowledge and 
utility value of the potential component members. This 
initiation is captured by the ensembleResolution construct (lines 
48-52) employed in the component that becomes the initiator of 
the ensembles resulting from the resolution.  

In Execution (the actuation construct—lines 20-23 and 54-63) 
the component performs the actuation and typically sends 
knowledge updates to the initiators of the ensembles it is a 
member of. If the component is an initiator of an ensemble 
(contains the construct ensembleResolution), then the final step 

in actuation is a signal for dismantling “its” ensemble(s) – this is 
completed once all their tasks are finished (specified in the 
taskComputation constructs).  

As an aside, the periodic operation of components is not 
visible in Fig. 1, since component instances are activated by the 
RCRS simulator in its simulation steps. 

Ensembles. The specification of an ensemble type is 
structured following the core concepts of ensemble formation 
as discussed in Section II.A. The selection of components, 
based on their type, is represented by the role construct (line 82). 
It determines the potential components that can take 
responsibility in the ensemble in the given role. The actual 
selection of components is then based on the membership 
condition (membership construct—lines 75-78 and 86-99) and 
the utility function (soft optimization rule defined by the utility 
construct—lines 101-104). For example, in the ProtectionTeam 
ensemble type, membership mandates that utility is computed as 
inversely proportional to the travel time needed for each 
selected member brigade to get to fireLocation. Strategic-level task 
computation takes the form of updating coordination-relevant 
knowledge of the ensemble’s members (taskComputation 
construct—lines 106-110). The membership condition includes 
both the cardinality constraints on the number of components 
(agents) and the domain-dependent constraints pertaining to 
geographical proximity which exploit the concepts featured by 
the inherited traits (Section IV.B). 

As to writing membership conditions in nested ensembles, 
there is a simple convention: Assuming the parent ensemble 
type P defines its membership condition MP, and a direct child 
ensemble type C defines its membership condition MC, then the 
actual membership condition of C is MP & MC. This reflects 
the rule that a member component of an instance of C has to be 
also a member component of an instance of P.   

 
1. class RescueScenario extends Model with RCRSConnectorTrait  
2.     with Map2DTrait [MapNodeStatus] with StateSpaceTrait { 
3.  
4.  class FireBrigade(val entityID: EntityID) extends Component { 
5.      var assignedFireLocation: …, waterLevel: …, location: …  
6.      val Protecting, Refilling, Idle, Escaping = BState 
7.     
8.    sensing {  
9.         sensed.messages.foreach { 
10.            case (InitiatorToFireBrigade(receiverId, ..., fireLoc), _)  
11.           // ... 
12.       } 
13.    } 
14.     
15.    constraints { 
16.      (Escaping->(brigadeHealth<MINOR_INJURY_THRESHOLD)) && 
17.      (Refilling->(refillingAtRefuge || tankEmpty)) && 
18.        // ... 
19.    } 
20.    actuation { 
21.      performAction()    
22.      sendMessages()       
23.    } 
24.     
25.    utility { 
26.       if (Protecting) 1 else 0 
27.    } 
28.     
29.    private def performAction(): Unit = state match { 
30.       case Refilling if !refillingAtRefuge => moveTo(nearestRefuge) 
31.       case Escaping if !regeneratingAtRefuge =>   
32.        moveTo(nearestRefuge) 
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33.       case Protecting => 
34.         if (inExtinguishingDistanceFromFire) extinguish() 
35.         else moveTo(assignedBuildingOnFire) 
36.       case _ => rest() 
37.     } 
38.    // ... 
39.  }   
40.  
41.  class FireStation(val entityID: EntityID) extends Component { 
42.    val fireCoordination = root(new FireCoordination(this)) 
43.  
44.    sensing { 
45.      processReceivedMessages() 
46.    } 
47.  
48.    ensembleResolution { 
49.      fireCoordination.initiate()     
50.          //establishes a number of ProtectionTeam   
51.          //and of ExtinguishTeam instances  
52.    } 
53.  
54.    actuation { 
55.      for (protectionTeam <- 
56.        fireCoordination.protectionTeams.selected)  
57.        for (brigade <- protectionTeam.brigades.selected) { 
58.          val message = InitiatorToFireBrigade(brigade.entityID,  
59.              brigade.brigadeState, brigade.assignedFireLocation) 
60.              agent.sendSpeak(time, Constants.TO_AGENTS,  
61.        Message.encode(message)) 
62.          // ... likewise for ExtinguishTeam 
63.      } 
64.    } 
65.  
66.  class FireCoordination(fireStation: FireStation) extends Ensemble { 
67. // fireStation ∈ 𝑃 in Definition 1 
68.    val extinguishTeams = // 𝑔 ∈ 𝐺 in Definition 1 
69.         ensembles(buildingsOnFire.map(fireLocation => new  
70.       ExtinguishTeam(fireLocation))) 
71.    val protectionTeams = // 𝑔 ∈ 𝐺 in Definition 1 
72.          ensembles(buildingsOnFire.map(fireLocation => new  
73.       ProtectionTeam(fireLocation))) 
74.  
75.    membership { // M in Definition 1 
76.      extinguishTeams.map(_.brigades) 
77.                      ++ protectionTeams.map(_.brigades)).allDisjoint 
78.    } 
79.  } 
80.  
81.  class ProtectionTeam(fireLocation: EntityID) extends Ensemble { 
82.    val brigades = role("brigades",components.select[FireBrigade]) 

  // 𝑟 ∈ 𝑅 in Definition 1  
83.    val routesToFireLocation = map.shortestPath.to(fireLocation)   
84.    val firePredictor = statespace(burnModel(fireLocation), time, 
85.                                             fireLocation.status.burnoutStage) 
86.    membership {   // M in Definition 1 
87.      brigades.all(brigade =>  
88.       (brigade.state == Idle) || 
89.       (brigade.state == Protecting) && 
90.        sameLocations(brigade.assignedFireLocation) 
91.      ) && 
92.      brigades.all(brigade => 
93.       routesToFireLocation.timeFrom(mapPosition(brigade)) match { 
94.           case None => false 
95.           case Some(travelTime) =>  
96.        firePredictor.valueAt(travelTime) < 0.9 
97.        }) && 
98.      brigades.cardinality >= 2 && brigades.cardinality <= 3 
99.    } 
100.  
101.   utility {   // U in Definition 1    
102.      brigades.sum(brigade => travelTimeToUtility( 
103.     routesToFireLocation.timeFrom(mapPosition(brigade)))) 
104.   } 
105.  
106.   taskComputation {  // T in Definition 1 
107.       for (brigade <- brigades.selectedMembers) { 
108.         brigade.assignedFireLocation = Some(fireLocation) 
109.       } 
110.     }  
111. } 

112.  
113. class ExtinguishTeam(fireLocation:EntityID) extends Ensemble 
114.    { /* ... */ } 
115. } 

Fig. 1. Fragment of ROBOCUP Rescue scenario in TCOEL  

B. Expressivity through domain-dependent traits 
In a membership condition it is not easy to express real-world 

constraints such as that one component is spatially close to 
another one, or that a building does not burn down before a 
firefighter unit reaches the building, etc. The articulation of 
such conditions strongly depends on the particular SSA domain. 
To build support for all the possible types of conditions to the 
core of the specification language is not only impractical, since 
the language would be quite complex and hard to learn, but even 
impossible, as all the possible SSA domains cannot be foreseen. 
Plus, a single application typically would not need all the 
condition types. Indeed, all the examples in Section III specify 
conditions over spatial distances and estimated travel times. 
However, while the RCRS use case prescribes conditions over 
estimates of fire spreading/burning speed, a connected mobility 
system would, e.g., prescribe conditions over estimates of 
traffic congestions and vehicle speeds, etc. Therefore, in our 
approach, all these domain-dependent condition types are to be 
designed as reusable traits to be picked up and used in 
compliance with the needs of a specific application whenever 
possible. 

In the rest of the Section, we overview three traits that are 
already available in TCOEF. As with the core concepts, we 
illustrate two of them on the RCRS example in Fig. 1.  On the 
lines 1-2 there are the map trait (Map2DTrait) and data prediciton 
trait (StateSpaceTrait); furthermore, there is also a specific 
RCRSConnectorTrait connecting the language run-time (TCOEF) 
with the Rescue simulator (it creates particular agents and 
processes messages from/to the simulator—not explained 
here). Technically, TCOEL traits are developed as Scala traits. 

Map Trait. This trait serves to capture spatial-temporal 
relations between the components to be included in an 
ensemble. The typical use is, e.g., to select the entities that are 
close to each other or close to a particular location in terms of 
travel time. An example is on lines 83, 93, 102-103. Line 82 
computes the shortest routes to fireLocation (via Dijkstra’s 
algorithm). Lines 93 and 102-103 query the computed travelTime 
needed for a FireBrigade to reach fireLocation.  

Data prediction Trait. This trait serves to form ensembles 
based on the prediction of a data value in SSA. Such predictions 
can rely either on state-space models that characterize data 
evolution based on physical processes [20] or on machine 
learning models that capture patterns and trends in historical 
data. Examples of application of this trait include (i) the team 
of “agents within travel time less than the estimated time until 
building B is burnt out” and (ii) the team of “agents within 
travel time less than the estimated time-to-survive of victim V”.  

In TCOEL, the former is captured by lines 84-85 and 96. 
Lines 84-85 initialize a predictor of how quickly a particular 
building (at fireLocation) burns out based on its burning model 
represented as an ordinary differential equation (ODE); such a 
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model is assumed to be associated with each building. The 
initial conditions for ODE are the current time and current 
burnoutStage of the building.  

The predictor uses a solver (i.e. a numerical integrator) to 
solve ODE for a specified point of time (line 96). By combining 
Map2DTrait and StateSpaceTrait, lines 93-96, it is ensured that “All 
agents selected for the team have to be able to reach the building 
(i.e. travelTime is not None) while the burnoutStage of the building 
and the travelTime the agent needs to reach it has to be below 0.9 
(the building is not burnt out yet)”. 

Statistics Trait. This trait offers the possibility to construct 
an ensemble based on statistical evidence about the behavior of 
certain stochastic processes in the system. Here, we build on 
our previous work in mode-switching based on statistical tests 
[21]. Due to space constraints, we do not demonstrate this on 
the example in Fig. 1 since this would necessitate including 
other parts of the scenario; instead, we give an illustration 
below.  

Consider an agent team that heavily relies on radio 
communication, so that it can be formed only if “The expected 
probability of packet delivery over the radio is 90 percent or 
more, evaluated over the last hour with a confidence of 95%” 
(technically, such parameters can be set in the RCRS 
simulator). This would be captured in TCOEL as msgDelivery 
(time - 3600, time).probability > 0.9 withConfidence 0.95, where 
msgDelivery is a Boolean timeseries recording whether an 
expected packet was received or not. The whole expression 
denotes a one-sided statistical test whether one can reject the 
null hypothesis that the samples over the last hour have the 
probability of being true less or equal to 0.9 with significance 
level 𝛼 = 0.05.  

C. TCOEF 
TCOEF is a runtime framework (middleware in the form of 

a Scala library) which executes the individual steps of 
component’s MAPE-K loop and takes care of resolving 
ensembles. Furthermore, it provides a basic extensible library 
of reusable traits (Section IV B).  

Internally, TCOEF translates the component instances and 
ensemble types to a constraint optimization problem (COP) that 
describes optimal instantiation of ensembles as defined in 
Definition 4. The COP which encodes instantiation of 
ensembles based on their respective ensemble instance 
templates (𝐸A, 𝑉6A) as generated by functions 𝑔𝑠345  (Definition 
1). This instantiation starts from root ensembles instances 
(Definition 3 and line 42 in Fig. 1) and goes recursively over 
the sub-ensemble groups (i.e. 𝐺 in Definition 1). The 
membership of a component in an ensemble instance and sub-
ensemble instances are encoded as Boolean variables. 
Membership conditions are encoded as hard constraints and 
utility functions as soft constraints. The rules that determine if 
an ensemble is valid (Definition 2) and determine ensemble 
hierarchies are also encoded as hard constraints. 

A solution found by the constraint solver corresponds to valid 
instantiation of root ensemble instances. The optimal solution 
found by the solver then implies the optimal instantiation of 
ensemble hierarchy (or hierarchies).  

V. EVALUATION 

As stated in Sect. I, with TCOEL and TCOEF we aim at 
providing (1) a language that allows for expressive yet reusable 
specification of complex components and ensembles and (2) a 
runtime framework for resolving such complex ensembles. We 
therefore evaluated both the level of reuse that TCOEL enables 
and the scalability of TCOEF in resolving complex hierarchical 
ensembles.  

A. Level of reuse enabled by TCOEL 
To compare the development effort when using TCOEL 

against employing a classical approach, we have developed two 
versions of the RCRS use case—one exploiting the TCOEF 
framework (as described in Sect. IV.A and IV.B) and another 
one employing a single-purpose backtracking algorithm (both 
are available at http://github.com/d3scomp/tcoef). The 
TCOEL-based implementation is formed by a main class and 
several additional classes defining auxiliary functions. The 
main class with the additional classes amounts to roughly 400 
LOC in total. It further uses three reusable traits—the connector 
to the RoboCup simulator, map trait and data prediction trait. 
Each of these traits is implemented as a set of classes with the 
overall sizes of 560 LOC. Thus, in total, approximately a half 
of the code is the business logic of the use case and another half 
the reusable traits.  

The implementation without TCOEL is a single Scala class 
(with nested classes) with domain-dependent concepts 
embedded in its code (those corresponding to the traits above). 
Since it cannot take advantage of the solver used in TCOEL, it 
implements a simple search heuristic to figure out the agent 
teams (corresponding to ensembles in TCOEL). Overall, it 
amounts to 1065 LOC—i.e. roughly two times the size of 
business logic in the TCOEL-based solution. Note that the size 
of the former is just slightly less than the overall size of the 
latter—a small penalty for taking advantage of the reusable 
traits. Though these measurements are difficult to generalize, 
they suggest that the reusability of traits can bring an advantage 
already when a trait can be reused across two use cases. Also, 
TCOEL removes the need to provide code that figures out the 
composition of agent teams. The process of resolving the agent 
teams typically leads to developing some heuristic likely 
combined with backtracking. Such technique leads intrinsically 
to difficult development and debugging. As such it requires 
significant elaboration effort, even though, due to recursion, the 
size of actual code can be relatively small.  

B. Scalability of ensemble resolution process in TCOEF 
To evaluate the scalability of TCOEF, we benchmarked the 

ensemble resolution process employed in the RCRS use case 
(Sect. III). This process works in the following way: There is a 
custom RCRS agent realized as a base class for every 
component instance in the scenario (firefighters, fire station). 
The class provides implementation for sensing, actuating and 
message sending, and more importantly, allows a component to 
act as an ensemble initiator. To this end, the class invokes the 



ensemble resolution process (namely the Choco solver5) and 
finally executes the tasks of the instantiated ensembles. 

To evaluate the scalability of ensemble resolution, we ran the 
RCRS use case on a small map (58 roads and 37 buildings) with 
1 FireStation and variable number of fires and FireBrigades for 
a predefined duration (100 simulation steps). At each step, the 
COP solver was invoked. We measured the duration of each 
step; the median duration for different number of fires and fire 
brigades is depicted in Figure 2. We repeated the experiment 
with a larger map (“Kobe” featuring 1602 roads and 757 
buildings); median durations are depicted in Figure 3. In both 
experiments we observed that, due to the exponential 
complexity of ensemble resolution as COP, ensemble 
resolution with 5 fires and 5 FireBrigades or more takes more 
than 20 secs to complete, whereas “easier” cases were mostly 
solved within 1 sec. We further comment on the scalability 
limitations of our approach in the following section.  

VI. DISCUSSION OF LIMITATIONS 
As mentioned in Section IV.C, for resolving ensembles 

TCOEF currently internally uses a centralized COP solver. We 
could generally speed up the ensemble resolution by 
incorporating a more optimized solver, however this does not 
provide an answer to the intrinsic complexity of the problem. In 
this respect, there are two promising methods to address the 
problem: (a) employ multiple root ensemble instances since 
their resolution processes are independent and can thus be 
parallelized, or (b) employ a non-exhaustive search of the state 
space by stopping the solver after some fixed time. This should 
be combined with preconditioning the problem model in such a 
way that reasonably good solutions are likely to be found first 
and likely suboptimal solutions are discarded upfront. This can 
be done by sorting the components in the order in which they 
contribute to the system utility and by discarding those having 
a smaller contribution to the utility than a given threshold. In 
the RCRS use case, it means sorting FireBrigades by the 
distance to the fire and removing those being too far. 
Nevertheless, this may result in finding a non-optimal solution, 
or even in not finding a solution at all (though it generally 
exists); our initial experiments suggest that such relatively 
simple means can significantly help in addressing the inherent 
complexity problem without compromising the average quality 
of the system too much [22]. 

Regarding the effectiveness of the proposed TCOEL 
language, we have provided an initial assessment of the level of 
reuse that can be achieved via using TCOEL compared to using 
plain Scala. We acknowledge that a more complete evaluation 
of the effectiveness and comprehensibility of TCOEL requires 
one or more user studies (such as[23]). Nevertheless, the result 
of such user studies will depend on the familiarity of the users 
with Scala.   

VII. RELATED WORK 
As mentioned in Section I, component ensembles have been 

 
5 http://www.choco-solver.org/ 

proposed to be realized for SSA. The original idea is based on 
SCEL [6], [13], which proposes the specification of ensembles 
implicitly (via attributes of component knowledge). Until now, 
several frameworks based on the concept of ensembles have 
already been developed and applied. Helena [7], JRESP 
(http://jresp.sourceforge.net) and DEECo [1] are examples of 
them. Specifically in the context of DEECo, we have we have 
proposed a method for designing component ensembles  [8], 
[24] and discussed the typical software engineering 
assumptions violated in software intensive CPS, which is 

 

   

Figure 2: Ensemble resolution duration for different number of fires 
and fire brigades on a small map in the RCRS. Durations more than 20 

secs are depicted in grey.
 

   

Figure 3: Ensemble resolution duration for different number of fires 
and fire brigades on the Kobe map in the RCRS. Durations more than 

20 secs are depicted in grey.



mitigated by the ensemble [25]. Furthermore, in support of 
ensembles, we have studied several aspects of underlying 
networks, including their dynamically modified topologies 
[17], [26]. The benefits of ensembles in DEECo-based 
applications were also illustrated in [1].  

The aforementioned frameworks differ in the semantic of 
ensemble formation: In Helena, a component instance explicitly 
indicates which of the ensembles it belongs to. In contrast, a 
JRESP ensemble is an abstraction capturing the groups of 
cooperating components, dynamically determined by means of 
their attribute-based communication. Hence, ensembles are 
realized implicitly in JRESP. (In a similar vein, AbaCuS [27], 
though not an explicitly ensemble-based framework, employs 
opportunistic and attribute-based communication among 
components). Finally, DEECo ensembles are specified 
explicitly. Their formation employs a “greedy” strategy—a 
component is a member of each of the ensemble instance, the 
membership condition of which it satisfies, and, at the same 
time this condition is solely based on the component’s current 
knowledge and cannot express, e.g., any reflection property 
(like cardinality). This is in contrast to the much more 
expressive power of TCOEL in membership conditions thanks 
to the concepts like trait, cardinality, and utility function. 

Team formation is intensively studied in the RCRS 
community. Many approaches [28], based on different criteria, 
have been already proposed and implemented within the 
project, however their realizations are low-level and technically 
single-purpose, not reusable elsewhere. To address the issue, 
the Agent Development Framework (ADF, https://github.com/ 
RCRS-ADF/RCRS-ADF) [29] was recently proposed and has 
started being employed in support of an easy reuse of code 
among multiple teams participating in RCRS. ADF defines a 
set of Java interfaces/base classes for individual aspects of 
RCRS applications, e.g., tactics for platoons and centers, path 
planning, and communication. This way it provides a basic 
structure for creating agents. In general, ADF also uses traits, 
yet quite low-level (plus, at the time of writing, lacking almost 
any documentation) and reusable only within the RCRS 
applications. Nevertheless, ADF lacks the ability to define 
teams as first class architectural concepts. 

Another framework targeting reuse in the RCRS applications 
is RMASBench [30]—a testbed for multi-agent coordination 
algorithms. The main focus of RMASBench is benchmarking 
of distributed constraints optimization problem (DCOP) 
algorithms used within this framework to resolve team 
formation of agents. For this purpose, the API of RMASBench 
adds an extra channel that allows an extensive exchange of 
messages between agents. The DCOP algorithms in 
RMASBench are modelled as reusable first-class entities and 
when a problem is to be solved by reusing one of these 
algorithms, just a scoring function needs to be implemented. 

Multi-paradigm domain-specific and modeling languages 
have recently emerged [31],  similar to TCOEL in the aspect of 
specification. Multi-paradigm modeling targets a combination 
of multiple abstractions, formalisms and (meta-) modeling 
levels into a single approach [32]. An example of such a 
language is QAML [33],  a quantitative analysis modeling 

language constructed by following the multi-paradigm 
modeling approach, i.e., for individual paradigm concerns it 
reuses existing modeling languages (e.g., AADL for 
architecture, MathML for math expressions), composing them 
together into a single tool. Compared to TCOEL, however, 
QAML is not designed as extensible nor, notably, supports a 
notion similar to ensemble. Another example can be found in 
[34], where the authors describe the process and challenges they 
faced during designing a multi-paradigm-based software 
architecture description language—but again as in the case of 
QAML, their language is not designed to be extensible and 
there is no notion similar to ensemble.  

VIII. CONCLUSION 
In this paper, we have focused on the problem of specifying 

and forming complex, real-life dynamic groups of cooperating 
components in Smart System Applications (SSA), which 
manifest as heterogeneous landscape of various applications of 
Cyber-Physical Systems, Internet of Things, and Smart Sensing 
Systems. We have provided an extensible specification and also 
implementation language TCOEL that allows specifying 
component ensembles in an intuitive, reusable and, at the same 
time, semantically rich way. Built as an internal DSL in Scala, 
it thus serves as an implementation language as well. Moreover, 
since Scala complies to JVM, it easily interoperates with Java 
and other JVM- based languages. 

A conservative way to design and implement an SSA use 
case would be to introduce a dedicated DSL from scratch; such 
an approach obviously lacks reusability when multiple use 
cases featuring partly common concepts are to be considered. 
On the contrary, the strength of our TCOEL is that it provides 
a compositional way to design a DSL for a particular SSA 
featuring ensembles. It does it by taking advantage of the 
overlap that exists in SSA domains in terms of paradigms they 
exploit in modeling the reality. These paradigms are reflected 
as reusable traits in the library being a part of TCOEF—the 
software framework which implements TCOEL. The viability 
of TCOEL and the traits was demonstrated on a use case 
inspired by RCRS—a multi-agent solution to disaster response 
scenarios where dynamic teams of agents/components are an 
inherent necessity. This use case and, primarily, TCOEL 
together with TCOEF are publicly available as an open source 
library at http://github.com/d3scomp/tcoef. 
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